论文标题
冲击力施加在弹丸上的弹力弹性,渗透到分层颗粒床上
Impact drag force exerting on a projectile penetrating into a hierarchical granular bed
论文作者
论文摘要
固体物体对小体表面的影响可以通过对层次结构的颗粒靶标的固体影响来建模。基于实验,开发了层次结构化颗粒靶标的撞击力模型。我们执行了一组颗粒状冲击实验,其中靶晶粒的机械强度和孔隙率系统地变化。微小的玻璃珠(直径为$ 5 $〜$〜$ m $ m)被聚集在一起,形成$ 2 $ - $ 4 $〜毫米直径的多孔谷物。然后,将谷物烧结以控制其力量。聚乙烯球(直径为$ 12.7 $ 〜mm)被滴入由这些多孔晶粒组成的层次颗粒靶标上。穿透球的运动由高速摄像头捕获并进行分析。我们发现,层次结构化的颗粒目标产生的影响可以通过惯性阻力和深度偏移阻力的总和来建模。层次颗粒状影响的深度应变远大于由刚性晶粒组成的通常的颗粒靶标的。晶粒强度与影响动态压力之间的比率是表征这种非凡的大深度拖力的关键无量纲参数。当影响动态压力大于晶粒强度时,谷物断裂在冲击动力学中起着重要作用。这意味着还应考虑谷物破裂的作用,以使对小体的影响。也许,可以根据对行星探索器的入侵或达阵的运动学观察来估算表面晶粒的有效强度。
Impact of a solid object onto a small-body surface can be modeled by the solid impact onto a hierarchically structured granular target. Impact drag force model for the hierarchically structured granular target is developed based on the experiment. We perform a set of granular impact experiments in which mechanical strength and porosity of target grains are systematically varied. Tiny glass beads ($5$~$μ$m in diameter) are agglomerated to form porous grains of $2$--$4$~mm in diameter. Then, the grains are sintered to control their strength. A polyethylene sphere ($12.7$~mm in diameter) is dropped onto a hierarchical granular target consisting of these porous grains. Motion of the penetrating sphere is captured by a high-speed camera and analyzed. We find that impact drag force produced by the hierarchically structured granular target can be modeled by the sum of inertial drag and depth-proportional drag. The depth-proportional drag in hierarchical granular impact is much greater than that of the usual granular target consisting of rigid grains. The ratio between grain strength and impact dynamic pressure is a key dimensionless parameter to characterize this extraordinary large depth-proportional drag. Grain fracturing plays an important role in the impact dynamics when the impact dynamic pressure is sufficiently larger than the grain strength. This implies that the effect of grain fracturing should be considered also for the impact on a small body. Perhaps, effective strength of the surface grains can be estimated based on the kinematic observation of the intrusion or touchdown of the planetary explorator.