论文标题
雅典娜++中的多流体灰尘模块:算法和数值测试
A Multi-Fluid Dust Module in Athena++: Algorithms and Numerical Tests
论文作者
论文摘要
我们描述了雅典娜++磁性水力学(MHD)代码中多流体尘埃模块的算法,实现和数值测试。该模块可以通过空气动力阻力(以停止时间为特征)来容纳与气体相互作用的任意数量的灰尘物种,并具有许多数值求解器。特别是,我们描述了两个二阶准确,两阶段的完全极限的或者,它们在僵硬的方向上是稳定的,包括短停止时间和高灰尘质量负荷,它们分别与雅典娜+的二阶显式van-leer和二阶显式范·莱尔和runge-kutta速度动力学求解器配对。此外,我们制定了尘埃浓度扩散与灰尘反对反应的一致处理,这融合了动量扩散并确保伽利略的不变性。新的配方和僵硬的阻力求解器可与雅典娜++的大多数现有特征兼容,包括不同的坐标系,网状细化,剪切盒和轨道对流。我们提出了一系列的测试问题,包括线性和非线性制度中的流媒体不稳定性以及本地和全球环境,这表明该代码实现了所需的性能。该模块对于在原月经磁盘中的尘埃动力学和行星形成的研究特别有用。
We describe the algorithm, implementation and numerical tests of a multifluid dust module in the Athena++ magnetohydrodynamic (MHD) code. The module can accommodate an arbitrary number of dust species interacting with the gas via aerodynamic drag (characterized by the stopping time), with a number of numerical solvers. In particular, we describe two second-order accurate, two-stage, fully-implicit solvers that are stable in stiff regimes including short stopping time and high dust mass loading, and they are paired with the second-order explicit van-Leer and Runge-Kutta gas dynamics solvers in Athena++, respectively. Moreover, we formulate a consistent treatment of dust concentration diffusion with dust back-reaction, which incorporates momentum diffusion and ensures Galilean invariance. The new formulation and stiff drag solvers are implemented to be compatible with most existing features of Athena++, including different coordinate systems, mesh refinement, shearing-box and orbital advection. We present a large suite of test problems, including the streaming instability in linear and nonlinear regimes, as well as local and global setting, which demonstrate that the code achieves the desired performance. This module will be particularly useful for studies of dust dynamics and planet formation in protoplanetary disks.