论文标题
荷斯坦极化子和双丙酸酯的有限温度光电电导率,带有分散声子的密度 - 矩阵重新归一化方法
Finite-temperature optical conductivity with density-matrix renormalization group methods for the Holstein polaron and bipolaron with dispersive phonons
论文作者
论文摘要
极化物和双极物理学的综合图片对于了解具有电子 - phonon相互作用的许多材料中的光吸收光谱至关重要。特别是,有限温度的特性是有趣的,因为它们在许多实验中起着重要作用。在这里,我们将平行的两个站点时间依赖性变分原理算法(P2TDVP)与局部基础优化(LBO)和纯化相结合,以计算时间依赖时间的电流相关函数。从这些信息中,我们在有限温度下用分散声子提取荷斯坦极化子和双孔龙的光电率。对于弱和中间电子 - 音波耦合方案中的极性子,我们分析了声子分散关系对光谱的影响。对于强电子 - 音波耦合,为平坦的声子带复制了不对称高斯的已知结果。对于有限的声子带宽,根据声子跳的迹象,高斯的中心要么转移到较大或较小的频率。我们说明,可以通过考虑出生的探测表面可以很好地理解这一点。双极性偶联也可以看到类似的行为。对于具有弱和中间耦合强度和一个平坦的声子带的双极龙,我们获得了两个截然不同的光谱。后者还具有低于声子频率的频率的温度依赖性共振。
A comprehensive picture of polaron and bipolaron physics is essential to understand the optical absorption spectrum in many materials with electron-phonon interactions. In particular, the finite-temperature properties are of interest since they play an important role in many experiments. Here, we combine the parallel two-site time-dependent variational principle algorithm (p2TDVP) with local basis optimization (LBO) and purification to calculate time-dependent current-current correlation functions. From this information, we extract the optical conductivity for the Holstein polaron and bipolaron with dispersive phonons at finite temperatures. For the polaron in the weak and intermediate electron-phonon coupling regimes, we analyze the influence of phonon dispersion relations on the spectra. For strong electron-phonon coupling, the known result of an asymmetric Gaussian is reproduced for a flat phonon band. For a finite phonon bandwidth, the center of the Gaussian is either shifted to larger or smaller frequencies, depending on the sign of the phonon hopping. We illustrate that this can be well understood by considering the Born-Oppenheimer surfaces. A similar behavior is seen for the bipolaron for strong coupling. For the bipolaron with weak and intermediate coupling strengths and a flat phonon band, we obtain two very different spectra. The latter also has a temperature-dependent resonance at a frequency below the phonon frequency.