论文标题
XView3-SAR:使用合成孔径雷达图像检测黑暗捕鱼活动
xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture Radar Imagery
论文作者
论文摘要
全世界不可持续的捕鱼实践对海洋资源和生态系统构成了重大威胁。识别在常规监测系统中未出现的船只(称为``黑暗船只'')是管理和确保海洋环境健康健康的关键。随着基于卫星的合成孔径雷达(SAR)成像和现代机器学习(ML)的兴起,现在可以在全天候的条件下白天或黑夜自动检测到黑暗的船只。但是,SAR图像需要特定于域的治疗方法,并且ML社区无法广泛使用。海上物体(船只和近海基础设施)相对较小且稀疏,具有挑战性的传统计算机视觉方法。我们提出了用于训练ML模型的最大标记数据集,以检测和表征SAR图像中的血管和海洋结构。 XView3-SAR由Sentinel-1任务中的近1,000张分析的SAR图像组成,平均每个29,400 x-24,400像素。使用自动化和手动分析的组合对图像进行注释。每个SAR图像都伴随着共置的测深和风状射手。我们还提供了Xview3计算机视觉挑战的概述,这是一项国际竞争,使用XView3-SAR大规模进行船舶检测和表征。我们发布数据(\ href {https://iuu.xview.us/} {https://iuu.xview.us/})和代码(\ href {https://github.com/diiux-com./diiux-xview} ML用于此重要应用。
Unsustainable fishing practices worldwide pose a major threat to marine resources and ecosystems. Identifying vessels that do not show up in conventional monitoring systems -- known as ``dark vessels'' -- is key to managing and securing the health of marine environments. With the rise of satellite-based synthetic aperture radar (SAR) imaging and modern machine learning (ML), it is now possible to automate detection of dark vessels day or night, under all-weather conditions. SAR images, however, require a domain-specific treatment and are not widely accessible to the ML community. Maritime objects (vessels and offshore infrastructure) are relatively small and sparse, challenging traditional computer vision approaches. We present the largest labeled dataset for training ML models to detect and characterize vessels and ocean structures in SAR imagery. xView3-SAR consists of nearly 1,000 analysis-ready SAR images from the Sentinel-1 mission that are, on average, 29,400-by-24,400 pixels each. The images are annotated using a combination of automated and manual analysis. Co-located bathymetry and wind state rasters accompany every SAR image. We also provide an overview of the xView3 Computer Vision Challenge, an international competition using xView3-SAR for ship detection and characterization at large scale. We release the data (\href{https://iuu.xview.us/}{https://iuu.xview.us/}) and code (\href{https://github.com/DIUx-xView}{https://github.com/DIUx-xView}) to support ongoing development and evaluation of ML approaches for this important application.