论文标题

用标准化流量建模SRGB相机噪声

Modeling sRGB Camera Noise with Normalizing Flows

论文作者

Kousha, Shayan, Maleky, Ali, Brown, Michael S., Brubaker, Marcus A.

论文摘要

噪声建模和减少是低级计算机视觉中的基本任务。它们对于依靠显示视觉上明显噪音的小传感器的智能手机相机特别重要。最近,人们对使用数据驱动的方法通过神经网络改善相机噪声模型有了新的兴趣。这些数据驱动的方法在原始传感器图像中存在的目标噪声是由摄像机的图像信号处理器(ISP)处理的。在RAW-RGB域中对噪声进行建模可用于改善和测试相机内降级算法。但是,在某些情况下,当不再可用的RAW-RGB域图像时,相机的ISP不进行denoising或需要额外的DeNoising。在这种情况下,传感器噪声通过ISP传播到标准RGB(SRGB)中编码的最终渲染图像。 ISP上的非线性步骤最终在SRGB域中明显更复杂的噪声分布和现有的原始域噪声模型无法捕获SRGB噪声分布。我们提出了一种基于标准化流量的新的SRGB域噪声模型,该模型能够学习在各种ISO级别下在SRGB图像中发现的复杂噪声分布。我们基于流量的方法的归一化方法通过噪声建模和合成任务的差距大大优于其他模型。我们还表明,在与我们的噪声模型合成的嘈杂图像上训练的图像Denoiser优于从基本模型中训练的噪声的图像。

Noise modeling and reduction are fundamental tasks in low-level computer vision. They are particularly important for smartphone cameras relying on small sensors that exhibit visually noticeable noise. There has recently been renewed interest in using data-driven approaches to improve camera noise models via neural networks. These data-driven approaches target noise present in the raw-sensor image before it has been processed by the camera's image signal processor (ISP). Modeling noise in the RAW-rgb domain is useful for improving and testing the in-camera denoising algorithm; however, there are situations where the camera's ISP does not apply denoising or additional denoising is desired when the RAW-rgb domain image is no longer available. In such cases, the sensor noise propagates through the ISP to the final rendered image encoded in standard RGB (sRGB). The nonlinear steps on the ISP culminate in a significantly more complex noise distribution in the sRGB domain and existing raw-domain noise models are unable to capture the sRGB noise distribution. We propose a new sRGB-domain noise model based on normalizing flows that is capable of learning the complex noise distribution found in sRGB images under various ISO levels. Our normalizing flows-based approach outperforms other models by a large margin in noise modeling and synthesis tasks. We also show that image denoisers trained on noisy images synthesized with our noise model outperforms those trained with noise from baselines models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源