论文标题

部分可观测时空混沌系统的无模型预测

Optimized Quantum Phase Estimation for Simulating Electronic States in Various Energy Regimes

论文作者

Kang, Christopher, Bauman, Nicholas P., Krishnamoorthy, Sriram, Kowalski, Karol

论文摘要

虽然用于模拟的量子算法比其经典算法表现出更好的渐近缩放标度,但目前无法在现实世界设备上实现它们。取而代之的是,化学家和计算机科学家依靠这些量子算法的昂贵经典模拟。特别是,近年来由于其真正的量子特征引起了很多关注的方法之一,量子相估计(QPE)算法是吸引了很多关注的方法之一。但是,对于中等系统尺寸,模拟和棘手是内存密集型的。本文讨论了QPESIM的性能和适用性,QPESIM是QPE算法的新模拟,旨在利用适度的计算资源。特别是,我们通过检查h $ _2 $ o的地面和核心级别来证明QPESIM在模拟各种电子状态中的多功能性。对于这些状态,我们还讨论了活动空间大小对计算能量质量的影响。对于高能量核心水平状态,我们证明了由15个活性轨道定义的活跃空间的新QPE模拟显着降低了核心水平激发能的误差,与使用较小的活动空间的QPE模拟相比

While quantum algorithms for simulation exhibit better asymptotic scaling than their classical counterparts, they currently cannot be implemented on real-world devices. Instead, chemists and computer scientists rely on costly classical simulations of these quantum algorithms. In particular, the quantum phase estimation (QPE) algorithm is among several approaches that have attracted much attention in recent years for its genuine quantum character. However, it is memory-intensive to simulate and intractable for moderate system sizes. This paper discusses the performance and applicability of QPESIM, a new simulation of the QPE algorithm designed to take advantage of modest computational resources. In particular, we demonstrate the versatility of QPESIM in simulating various electronic states by examining the ground and core-level states of H$_2$O. For these states, we also discuss the effect of the active-space size on the quality of the calculated energies. For the high-energy core-level states, we demonstrate that new QPE simulations for active spaces defined by 15 active orbitals significantly reduce the errors in core-level excitation energies compared to earlier QPE simulations using smaller active spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源