论文标题
部分可观测时空混沌系统的无模型预测
Visual Navigation for Autonomous Vehicles: An Open-source Hands-on Robotics Course at MIT
论文作者
论文摘要
本文报告了麻省理工学院新机器人课程的开发,执行和开源。该课程是对“自动驾驶汽车的视觉导航”(VNAV)的现代视野,并针对一年级的研究生和高级本科生,并事先接触机器人技术。 VNAV的目标是使学生准备在机器人技术和基于视觉的导航方面进行研究,重点是无人机和自动驾驶汽车。该课程跨越了整个自主导航管道;因此,它涵盖了一系列主题,包括几何控制和轨迹优化,2D和3D计算机视觉,视觉和视觉惯性探测仪,位置识别,同时定位和映射以及对感知的几何深度学习。 VNAV具有三个关键功能。首先,它通过暴露了特定于体现智能的挑战,例如,计算有限的计算和需求有限,可以弥补及时且强大的感知,从而弥补了对控制和决策的循环。其次,它通过结合严格的技术说明(包括在典型的机器人技术课程中探索的主题,例如,曼佛优化的主题)与幻灯片和视频展示了最新研究结果,从而达到了深度和广度之间的平衡。第三,它通过利用实体无人机平台(主要适用于小型住宅课程)和基于光合的统一模拟器(开源和可扩展到大型在线课程)来提供令人信服的动手机器人教育方法。 VNAV已于2018 - 2021年秋天在麻省理工学院提供,现已在MIT Opencourseware(OCW)上公开使用。
This paper reports on the development, execution, and open-sourcing of a new robotics course at MIT. The course is a modern take on "Visual Navigation for Autonomous Vehicles" (VNAV) and targets first-year graduate students and senior undergraduates with prior exposure to robotics. VNAV has the goal of preparing the students to perform research in robotics and vision-based navigation, with emphasis on drones and self-driving cars. The course spans the entire autonomous navigation pipeline; as such, it covers a broad set of topics, including geometric control and trajectory optimization, 2D and 3D computer vision, visual and visual-inertial odometry, place recognition, simultaneous localization and mapping, and geometric deep learning for perception. VNAV has three key features. First, it bridges traditional computer vision and robotics courses by exposing the challenges that are specific to embodied intelligence, e.g., limited computation and need for just-in-time and robust perception to close the loop over control and decision making. Second, it strikes a balance between depth and breadth by combining rigorous technical notes (including topics that are less explored in typical robotics courses, e.g., on-manifold optimization) with slides and videos showcasing the latest research results. Third, it provides a compelling approach to hands-on robotics education by leveraging a physical drone platform (mostly suitable for small residential courses) and a photo-realistic Unity-based simulator (open-source and scalable to large online courses). VNAV has been offered at MIT in the Falls of 2018-2021 and is now publicly available on MIT OpenCourseWare (OCW).