论文标题

Hofstadter的$ H $序列中的一个隐藏信号

A hidden signal in Hofstadter's $H$ sequence

论文作者

Angelo, Rodrigo

论文摘要

hofstadter $ h $序列由$ h(1)= 1 $和$ h(n)= n-h(h(h(n-1)))$定义,$ n> 1 $。如果$α$是$ x^3+x = 1 $的真实根,我们表明数字$αH(n)\ mod 1 $不是均匀分布在$ [0,1] $上,而是收敛到我们认为连续但不是可区分的分布。这是由于发现Steinerberger的发现,他发现了ULAM序列具有相似行为的真实数字。我们的结果与以下事实有关:从线性复发定义的某个序列$ h_n = h_ {n-1}+h_ {n-3} $具有属性$ \ | x h_n \ | \ rightArrow 0 $正好适合$ x \ in \ mathbb {z} [α] $,这是我们查询整数的一般线性复发序列的现象。

The Hofstadter $H$ sequence is defined by $H(1) = 1$ and $H(n) = n-H(H(H(n-1)))$ for $n > 1$. If $α$ is the real root of $x^3+x=1$ we show that the numbers $αH(n) \mod 1$ are not uniformly distributed on $[0,1]$, but converge to a distribution we believe is continuous but not differentiable. This is motivated by a discovery of Steinerberger, who found a real number with similar behavior for the Ulam sequence. Our result is related with the fact that a certain sequence defined from the linear recurrence $h_n=h_{n-1}+h_{n-3}$ has the property $\|x h_n\| \rightarrow 0$ precisely for $x \in \mathbb{Z}[α]$, a phenomenon we inquire for general linear recurrent sequences of integers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源