论文标题
具有不合格网格的声传输的边界元素方法
The Boundary Element Method for Acoustic Transmission with Nonconforming Grids
论文作者
论文摘要
通过嵌入无限培养基中的均匀材料的声波传播可以作为边界积分方程式配方,并使用边界元素方法准确求解。由于网格大小的增加,每个波长固定数量的元素,并且由于线性系统的不良条件,计算效率在高频下恶化。这项研究介绍了边界元素方法的设计,用于材料界面处的不合格表面网格。不合格的算法允许独立的网格产生,提高灵活性并降低自由度。它用于用于Helmholtz传输问题,操作器预处理以及与有限元求解器耦合的不同边界积分公式。在规范配置和声学泡沫模型上的广泛数值基准确认了在边界元素方法中采用不合格的网格耦合时,计算效率的显着提高。
Acoustic wave propagation through a homogeneous material embedded in an unbounded medium can be formulated as a boundary integral equation and accurately solved with the boundary element method. The computational efficiency deteriorates at high frequencies due to the increase in mesh size with a fixed number of elements per wavelength and also at high material contrasts due to the ill-conditioning of the linear system. This study presents the design of boundary element methods feasible for nonconforming surface meshes at the material interface. The nonconforming algorithm allows for independent grid generation, improves flexibility, and reduces the degrees of freedom. It works for different boundary integral formulations for Helmholtz transmission problems, operator preconditioning, and coupling with finite element solvers. The extensive numerical benchmarks at canonical configurations and an acoustic foam model confirm the significant improvements in computational efficiency when employing the nonconforming grid coupling in the boundary element method.