论文标题

在异质性和沟通约束下对离散分布的协作学习

Collaborative Learning of Discrete Distributions under Heterogeneity and Communication Constraints

论文作者

Huang, Xinmeng, Lee, Donghwan, Dobriban, Edgar, Hassani, Hamed

论文摘要

在现代机器学习中,用户通常必须协作以学习数据的分布。沟通可能是一个重要的瓶颈。先前的工作已经研究了同质用户 - 即,其数据遵循相同的离散分发 - 并提供了最佳的沟通效率方法来估计该分布。但是,这些方法在很大程度上依赖于同质性,并且在用户离散分布异质时的常见情况下不太适用。在这里,我们考虑了一种自然且可拖动的异质性模型,在少数条目上,用户的离散分布仅稀少。我们提出了一种名为Shift的新颖的两阶段方法:首先,用户通过与服务器进行通信以学习中心分布来协作;依靠可靠统计的方法。然后,对学习的中央分布进行微调以估计其各自的个体分布。我们表明,在我们的异质性模型和在通信约束下,转移是最小的最佳选择。此外,我们使用综合数据和文本域中的$ n $ gram频率估计提供实验结果,从而证实了其效率。

In modern machine learning, users often have to collaborate to learn the distribution of the data. Communication can be a significant bottleneck. Prior work has studied homogeneous users -- i.e., whose data follow the same discrete distribution -- and has provided optimal communication-efficient methods for estimating that distribution. However, these methods rely heavily on homogeneity, and are less applicable in the common case when users' discrete distributions are heterogeneous. Here we consider a natural and tractable model of heterogeneity, where users' discrete distributions only vary sparsely, on a small number of entries. We propose a novel two-stage method named SHIFT: First, the users collaborate by communicating with the server to learn a central distribution; relying on methods from robust statistics. Then, the learned central distribution is fine-tuned to estimate their respective individual distribution. We show that SHIFT is minimax optimal in our model of heterogeneity and under communication constraints. Further, we provide experimental results using both synthetic data and $n$-gram frequency estimation in the text domain, which corroborate its efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源