论文标题

RMF可访问性渗透在方向图上

RMF accessibility percolation on oriented graphs

论文作者

Duque, Frank, Ramirez-Gomez, Daniel, Roldán-Correa, Alejandro, Valencia, Leon A.

论文摘要

可访问性渗透是一种受到进化生物学启发的新型渗透问题:一个称为其适应性的随机数,被分配给图形的每个顶点,然后,如果严格通过它增加了健身,则可以访问图中的路径。在粗糙的Fuji(RMF)模型中,适应性函数在图表上定义为$ω(v)=η(v)+θ\ cdot d(v)$,其中$θ$是一个称为漂移的正数,$ d $是与图形源的距离,$ d $是图形源,$η(v)$是i.i.d。I.I.D。随机变量。在本文中,我们确定在HyperCube上具有RMF可访问性渗透的$θ$和二维晶格$ \ Mathbb {l}^2 $和$ \ Mathbb {l}^2_ 2_ {alt} $。

Accessibility percolation is a new type of percolation problem inspired by evolutionary biology: a random number, called its fitness, is assigned to each vertex of a graph, then a path in the graph is accessible if fitnesses are strictly increasing through it. In the Rough Mount Fuji (RMF) model the fitness function is defined on the graph as $ω(v)=η(v)+θ\cdot d(v)$, where $θ$ is a positive number called the drift, $d$ is the distance to the source of the graph and $η(v)$ are i.i.d. random variables. In this paper we determine values of $θ$ for having RMF accessibility percolation on the hypercube and the two-dimensional lattices $\mathbb{L}^2$ and $\mathbb{L}^2_{alt}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源