论文标题

功能连接组学的可区分编程

Differentiable programming for functional connectomics

论文作者

Ciric, Rastko, Thomas, Armin W., Esteban, Oscar, Poldrack, Russell A.

论文摘要

映射功能连接组有可能发现对大脑组织的关键见解。但是,功能连接组的现有工作流对新数据的适应性受到限制,而有原则的工作流程设计是一个具有挑战性的组合问题。我们介绍了一个新的分析范式和软件工具箱,该范式实现了功能连接组中使用的常见操作作为完全可区分的处理块。在此范式下,工作流程配置作为将它们插值的可区分功能的重新聚集存在。我们设想的可区分程序在传统管道和端到端神经网络之间占据了一个利基市场,将玻璃箱的障碍性和域知识结合在一起,以及对后者的优化的不合适性。在这项初步工作中,我们为可区分的连接组学提供了概念验证,证明了我们的处理能力既可以概括神经科学中的规范知识,又在无监督的环境中进行新发现。我们可区分的模块具有问题域中最新方法的竞争力,包括功能分析,降解和协方差建模。综上所述,我们的结果和软件证明了对功能连接的可区分编程的希望。

Mapping the functional connectome has the potential to uncover key insights into brain organisation. However, existing workflows for functional connectomics are limited in their adaptability to new data, and principled workflow design is a challenging combinatorial problem. We introduce a new analytic paradigm and software toolbox that implements common operations used in functional connectomics as fully differentiable processing blocks. Under this paradigm, workflow configurations exist as reparameterisations of a differentiable functional that interpolates them. The differentiable program that we envision occupies a niche midway between traditional pipelines and end-to-end neural networks, combining the glass-box tractability and domain knowledge of the former with the amenability to optimisation of the latter. In this preliminary work, we provide a proof of concept for differentiable connectomics, demonstrating the capacity of our processing blocks both to recapitulate canonical knowledge in neuroscience and to make new discoveries in an unsupervised setting. Our differentiable modules are competitive with state-of-the-art methods in problem domains including functional parcellation, denoising, and covariance modelling. Taken together, our results and software demonstrate the promise of differentiable programming for functional connectomics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源