论文标题

评估高斯抓地图的生成抓握模型

Evaluating Gaussian Grasp Maps for Generative Grasping Models

论文作者

Prew, William, Breckon, Toby P., Bordewich, Magnus, Beierholm, Ulrik

论文摘要

将机器人抓握到以前看不见的物体是一般机器人操作中的关键任务。当前训练许多抗植物生成抓握模型的方法依赖于从正确标记的Grasp矩形的中心三分之三产生的二进制地面真相抓地图。但是,这些二进制图不能准确反映机器人手臂可以正确掌握给定物体的位置。我们建议对带注释的grasps的连续高斯表示,以生成地面真相训练数据,该数据在模拟机器人掌握基准的基准上取得了更高的成功率。三个现代生成的抓地力网络经过二进制或高斯掌握地图的训练,以及机器人掌握文献的最新进展,例如将握把角度的离散化为垃圾箱和注意力损失功能。尽管根据标准矩形度量标准的差异可忽略不计,但高斯地图通过避免与对象的碰撞:达到87.94 \%的准确性时,高斯地图可以更好地再现训练数据,因此在同一模拟机器人臂上进行测试时提高了成功率。此外,最佳性能模型显示在以高推理速度转移到真正的机器人臂时,无需转移学习时就以高成功率运行。然后显示该系统能够在拮抗物理对象数据集基准上执行抓取。

Generalising robotic grasping to previously unseen objects is a key task in general robotic manipulation. The current method for training many antipodal generative grasping models rely on a binary ground truth grasp map generated from the centre thirds of correctly labelled grasp rectangles. However, these binary maps do not accurately reflect the positions in which a robotic arm can correctly grasp a given object. We propose a continuous Gaussian representation of annotated grasps to generate ground truth training data which achieves a higher success rate on a simulated robotic grasping benchmark. Three modern generative grasping networks are trained with either binary or Gaussian grasp maps, along with recent advancements from the robotic grasping literature, such as discretisation of grasp angles into bins and an attentional loss function. Despite negligible difference according to the standard rectangle metric, Gaussian maps better reproduce the training data and therefore improve success rates when tested on the same simulated robot arm by avoiding collisions with the object: achieving 87.94\% accuracy. Furthermore, the best performing model is shown to operate with a high success rate when transferred to a real robotic arm, at high inference speeds, without the need for transfer learning. The system is then shown to be capable of performing grasps on an antagonistic physical object dataset benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源