论文标题

开放环境机器学习

Open-environment Machine Learning

论文作者

Zhou, Zhi-Hua

论文摘要

传统的机器学习研究通常假设学习过程的重要因素不变。随着当今机器学习的巨大成功,越来越多的实际任务,尤其是涉及开放环境场景的那些重要因素可能会发生变化的情况,在本文中称为开放环境机器学习(Open ML),在本文中存在于社区中。显然,对于机器学习从近距离环境转变为开放环境来说,这是一个巨大的挑战。它变得更加具有挑战性,因为在各种大数据任务中,数据通常会随着时间的流逝而积累,例如流,而在收集所有数据之后,很难训练机器学习模型。本文简要介绍了这一研究领域的一些进步,重点介绍了有关新班级,减少/增量特征,变化的数据分布,各种学习目标的技术,并讨论了一些理论问题。

Conventional machine learning studies generally assume close-environment scenarios where important factors of the learning process hold invariant. With the great success of machine learning, nowadays, more and more practical tasks, particularly those involving open-environment scenarios where important factors are subject to change, called open-environment machine learning (Open ML) in this article, are present to the community. Evidently it is a grand challenge for machine learning turning from close environment to open environment. It becomes even more challenging since, in various big data tasks, data are usually accumulated with time, like streams, while it is hard to train the machine learning model after collecting all data as in conventional studies. This article briefly introduces some advances in this line of research, focusing on techniques concerning emerging new classes, decremental/incremental features, changing data distributions, varied learning objectives, and discusses some theoretical issues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源