论文标题

带上自己的算法以进行最佳的差异私有随机最小值优化

Bring Your Own Algorithm for Optimal Differentially Private Stochastic Minimax Optimization

论文作者

Zhang, Liang, Thekumparampil, Kiran Koshy, Oh, Sewoong, He, Niao

论文摘要

我们研究了差异化私有(DP)算法,以进行平滑的随机最小值优化,并以随机最小化为副产品。这些环境的圣杯是使用具有线性时间复杂性的培训样本数量的算法,以确保隐私与过分人口损失之间的最佳权衡。我们提供了一个通用框架,用于解决差异化私有随机的最小值优化(DP-SMO)问题,该问题使从业者能够带来自己的基本优化算法并将其用作黑色框来获得近乎最佳的隐私权折衷权。我们的框架灵感来自最近提出的分阶段方法[22],用于非平滑差异私有随机凸优化(DP-SCO),该方法利用了对隐私保证的经验风险最小化(ERM)的稳定性。我们方法的灵活性使我们能够避开基础算法需要具有界限的要求,并允许使用复杂的方差降低加速方法以实现接近线性的时间复杂度。据我们所知,这些是第一个近线性时间算法,当目标是(强 - )凸面(强 - )凹面时,对平滑DP-SMO的人口二元性差距几乎是最佳的二元性差距。此外,基于我们的灵活框架,我们以近乎最佳的隐私权折衷权益丰富了平滑DP-SCO的近线时间算法的家庭。

We study differentially private (DP) algorithms for smooth stochastic minimax optimization, with stochastic minimization as a byproduct. The holy grail of these settings is to guarantee the optimal trade-off between the privacy and the excess population loss, using an algorithm with a linear time-complexity in the number of training samples. We provide a general framework for solving differentially private stochastic minimax optimization (DP-SMO) problems, which enables the practitioners to bring their own base optimization algorithm and use it as a black-box to obtain the near-optimal privacy-loss trade-off. Our framework is inspired from the recently proposed Phased-ERM method [22] for nonsmooth differentially private stochastic convex optimization (DP-SCO), which exploits the stability of the empirical risk minimization (ERM) for the privacy guarantee. The flexibility of our approach enables us to sidestep the requirement that the base algorithm needs to have bounded sensitivity, and allows the use of sophisticated variance-reduced accelerated methods to achieve near-linear time-complexity. To the best of our knowledge, these are the first near-linear time algorithms with near-optimal guarantees on the population duality gap for smooth DP-SMO, when the objective is (strongly-)convex--(strongly-)concave. Additionally, based on our flexible framework, we enrich the family of near-linear time algorithms for smooth DP-SCO with the near-optimal privacy-loss trade-off.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源