论文标题

Felare:在异质边缘系统上的机器学习任务的公平安排

FELARE: Fair Scheduling of Machine Learning Tasks on Heterogeneous Edge Systems

论文作者

Mokhtari, Ali, Hossen, Md Abir, Jamshidi, Pooyan, Salehi, Mohsen Amini

论文摘要

边缘计算通过同时且连续执行延迟敏感的机器学习(ML)应用程序来实现智能物联网的系统。这些基于边缘的机器学习系统通常是电池供电的(即能量限制的)。他们使用具有不同计算性能的异质资源(例如CPU,GPU和/或FPGA)来满足ML应用程序的延迟约束。面临的挑战是,就这些系统的能量和延迟约束分配了在异质边缘计算系统(HEC)上对不同ML应用程序的请求。为此,我们研究和分析资源分配解决方案,这些解决方案可以在考虑能量限制的同时增加准时任务完成率。重要的是,我们研究了边缘友好的(轻巧)多目标映射启发式方法,这些启发式方法不会偏向于特定的应用程序类型以实现目标。取而代之的是,启发式方法在其映射决策中考虑了同一ML应用程序中的“公平性”。绩效评估表明,根据潜伏期和能源目标,特别是在低至中等请求的到达率方面,所提出的启发式效果优于异质系统中广泛使用的启发式方法。我们观察到准时任务完成率提高了8.9%,节能提高了12.6%,而没有在边缘系统上施加任何明显的开销。

Edge computing enables smart IoT-based systems via concurrent and continuous execution of latency-sensitive machine learning (ML) applications. These edge-based machine learning systems are often battery-powered (i.e., energy-limited). They use heterogeneous resources with diverse computing performance (e.g., CPU, GPU, and/or FPGAs) to fulfill the latency constraints of ML applications. The challenge is to allocate user requests for different ML applications on the Heterogeneous Edge Computing Systems (HEC) with respect to both the energy and latency constraints of these systems. To this end, we study and analyze resource allocation solutions that can increase the on-time task completion rate while considering the energy constraint. Importantly, we investigate edge-friendly (lightweight) multi-objective mapping heuristics that do not become biased toward a particular application type to achieve the objectives; instead, the heuristics consider "fairness" across the concurrent ML applications in their mapping decisions. Performance evaluations demonstrate that the proposed heuristic outperforms widely-used heuristics in heterogeneous systems in terms of the latency and energy objectives, particularly, at low to moderate request arrival rates. We observed 8.9% improvement in on-time task completion rate and 12.6% in energy-saving without imposing any significant overhead on the edge system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源