论文标题

关于多维方程中径向波函数降低的边界条件的评论

Comments about the boundary condition for reduced radial wave function in multi-dimensional equation

论文作者

Khelashvili, Anzor, Nadareishvili, Teimuraz

论文摘要

在超级球形形式主义框架中,讨论了坐标起源的边界行为问题,该方程在上次经常被考虑。我们表明,与三维情况相反,在数学上似乎是自然的,在数学上没有很好的合理性。支持Dirichlet边界条件的更强有力的论点是波函数规范的时间独立性的要求。对于单数潜能,问题仍然开放。

The problem of boundary behaviour at the origin of coordinates is discussed for D-dimensional Schrodinger equation in the framework of hyper spherical formalism, which have been often considered last time. We show that the Dirichlet condition, which seems as natural, is not mathematically well justified, on the contrary to the 3-dimensional case. The stronger argument in favour of Dirichlet boundary condition is the requirement of time independence of wave functions norm. The problem remains open for singular potentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源