论文标题
$ g $ invariant浅神经网络的分类
A Classification of $G$-invariant Shallow Neural Networks
论文作者
论文摘要
当试图将深度神经网络(DNN)适合每组$ g $的$ g $ invariant目标功能时,只有将DNN限制为$ g $ invariant才有意义。但是,可以有许多不同的方法来做到这一点,从而提出了``$ g $ invariant神经体系结构设计''的问题:什么是针对给定问题的最佳$ g $ invariant架构?在我们考虑优化问题本身之前,我们必须了解搜索空间,其中的体系结构以及它们如何相互关系。在本文中,我们朝着这一目标迈出了第一步。我们证明了一个定理,可以对所有$ g $ invariant单隐藏层或``浅'''''神经网络($ g $ -snn)体系结构进行分类,并为任何有限的正交组$ g $ relu激活而进行了relu的激活,我们证明了第二个定理在包含映射的过程中可以探索范围或构造构造的范围,从而可以搜索构造的界限。 (NAS)。证明是基于每条$ g $ -snn的信件对签名的置换表示的$ g $代表,该代表作用于隐藏的神经元上的$ g $;该分类是按照$ g $的第一个共同学类别进行的,因此承认拓扑解释。据我们所知,与非平凡共同体学课相对应的$ G $ -SNN体系结构从未在文献中明确鉴定出来。使用代码实现,我们列举了某些示例组$ g $的$ G $ -SNN架构,并可视化它们的结构。最后,我们证明,仅当其权重矩阵为零时,与非等效共同体相对应的架构在功能空间中重合,并且我们讨论了这对NAS的含义。
When trying to fit a deep neural network (DNN) to a $G$-invariant target function with $G$ a group, it only makes sense to constrain the DNN to be $G$-invariant as well. However, there can be many different ways to do this, thus raising the problem of ``$G$-invariant neural architecture design'': What is the optimal $G$-invariant architecture for a given problem? Before we can consider the optimization problem itself, we must understand the search space, the architectures in it, and how they relate to one another. In this paper, we take a first step towards this goal; we prove a theorem that gives a classification of all $G$-invariant single-hidden-layer or ``shallow'' neural network ($G$-SNN) architectures with ReLU activation for any finite orthogonal group $G$, and we prove a second theorem that characterizes the inclusion maps or ``network morphisms'' between the architectures that can be leveraged during neural architecture search (NAS). The proof is based on a correspondence of every $G$-SNN to a signed permutation representation of $G$ acting on the hidden neurons; the classification is equivalently given in terms of the first cohomology classes of $G$, thus admitting a topological interpretation. The $G$-SNN architectures corresponding to nontrivial cohomology classes have, to our knowledge, never been explicitly identified in the literature previously. Using a code implementation, we enumerate the $G$-SNN architectures for some example groups $G$ and visualize their structure. Finally, we prove that architectures corresponding to inequivalent cohomology classes coincide in function space only when their weight matrices are zero, and we discuss the implications of this for NAS.