论文标题
离散的金石玻色子
Discrete Goldstone Bosons
论文作者
论文摘要
如果非线性实现,则确切的离散对称性可以降低给定理论的紫外线敏感性。由于自发对称性破裂而导致的标量在不破坏离散对称性的情况下进行巨大巨大,并且这些质量免受发散二次校正的保护。这与非线性实现的连续对称性相反,为此,伪石玻色子的质量需要明确的破坏机制。这些离散的金石玻色子的对称性保护的质量和潜力提供了有希望的物理途径,无论是在理论上还是鉴于对阿尔卑斯山的开花实验搜索。我们使用不变理论开发这种理论设置,并专注于潜力的最大自然最小值。为此,我们表明,紫外离散对称性的一个亚组在频谱中保持显式,即实现“ Wigner”;该亚组可以是阿比亚人或非阿贝利亚人。这表明对那些最小值的讲述实验信号:如果Abelian(非阿贝尔语)同时产生了两个(三个)退化标量,而多量表幅度的特定比率则提示了完整的Ultoraviolet离散对称性。精确的紫外线$ a_4 $和$ a_5 $对称的示例已大量详细探讨。
Exact discrete symmetries, if non-linearly realized, can reduce the ultraviolet sensitivity of a given theory. The scalars stemming from spontaneous symmetry breaking are massive without breaking the discrete symmetry, and those masses are protected from divergent quadratic corrections. This is in contrast to non-linearly realized continuous symmetries, for which the masses of pseudo-Goldstone bosons require an explicit breaking mechanism. The symmetry-protected masses and potentials of those discrete Goldstone bosons offer promising physics avenues, both theoretically and in view of the blooming experimental search for ALPs. We develop this theoretical setup using invariant theory and focusing on the maximally natural minima of the potential. For these, we show that typically a subgroup of the ultraviolet discrete symmetry remains explicit in the spectrum, i.e. realized "à la Wigner"; this subgroup can be either abelian or non-abelian. This suggests tell-tale experimental signals for those minima: at least two (three) degenerate scalars produced simultaneously if abelian (non-abelian), while the specific ratios of multi-scalar amplitudes provide a hint of the full ultraviolet discrete symmetry. Examples of exact ultraviolet $A_4$ and $A_5$ symmetries are explored in substantial detail.