论文标题

通勤收缩的最小统一扩张

Minimal unitary dilations for commuting contractions

论文作者

Pal, Sourav, Sahasrabuddhe, Prajakta

论文摘要

对于通勤收缩,$ t_1,\ dots,t_n $作用于希尔伯特太空上的$ \ mathcal h $,$ t = \ prod_ {i = 1}^n t_i $,我们表明$(t_1,\ dots,dots,dots,t_n)$ dialist insometies $ nimeties $(v_1 $ triention $ triention $ t $ trimation $ triment $ trrimation $ trrimation $ thim \ dots $ thim, $ v = \ prod_ {i = 1}^n v_i $是$ t $的最小等距扩张,仅当$(t_1^*,\ dots,\ dots,t_n^*)$扩展到通勤异构体$(y__1,\ dots,y_n)$ the $ t^$ $ t^$ t^*$ t^*$ $ y = \ prod_ {i = 1}^n y_i $是$ t^*$的最小等距扩张。然后,我们证明了这种结果的类似物,即$(t_1,\ dots,t_n)$的单一扩张及其伴随。我们发现一种必要且充分的条件使得$(T_1,\ dots,t_n)$具有单一扩张$(W_1,\ dots,w_n)$,在$ t $的最小单位扩张空间,$ W = \ prod_ = \ prod_ = \ prod_ = \ prod_ = 1}^n w_i $是$ t $ t $的最小扩张。我们在SCH $ \ ddot {a} $ ffer和sz上展示了这种统一扩张的明确结构。 Nagy-foias最小的统一扩张空间为$ t $。另外,我们表明,当$ t $是$ c._0 $收缩时,相对较弱的假设对于存在这样的单一扩张是必要的,并且足够足够,即当$ {t^*}^n \ rightArrow 0 $ as $ n \ rightArrow $ n \ rightarrow \ rightarrow \ infty $。当$ t $是$ c._0 $收缩时,我们为$(t_1,\ dots,t_n)$构建了另一个单一扩张。

For commuting contractions $T_1,\dots ,T_n$ acting on a Hilbert space $\mathcal H$ with $T=\prod_{i=1}^n T_i$, we show that $(T_1, \dots, T_n)$ dilates to commuting isometries $(V_1, \dots , V_n)$ on the minimal isometric dilation space of $T$ with $V=\prod_{i=1}^n V_i$ being the minimal isometric dilation of $T$ if and only if $(T_1^*, \dots , T_n^*)$ dilates to commuting isometries $(Y_1, \dots , Y_n)$ on the minimal isometric dilation space of $T^*$ with $Y=\prod_{i=1}^n Y_i$ being the minimal isometric dilation of $T^*$. Then, we prove an analogue of this result for unitary dilations of $(T_1, \dots , T_n)$ and its adjoint. We find a necessary and sufficient condition such that $(T_1, \dots , T_n)$ possesses a unitary dilation $(W_1, \dots , W_n)$ on the minimal unitary dilation space of $T$ with $W=\prod_{i=1}^n W_i$ being the minimal unitary dilation of $T$. We show an explicit construction of such a unitary dilation on both Sch$\ddot{a}$ffer and Sz. Nagy-Foias minimal unitary dilation spaces of $T$. Also, we show that a relatively weaker hypothesis is necessary and sufficient for the existence of such a unitary dilation when $T$ is a $C._0$ contraction, i.e. when ${T^*}^n \rightarrow 0$ strongly as $n \rightarrow \infty $. We construct a different unitary dilation for $(T_1, \dots , T_n)$ when $T$ is a $C._0$ contraction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源