论文标题

超导性准经典理论的有限元方法

A finite element method for the quasiclassical theory of superconductivity

论文作者

Seja, Kevin Marc, Lofwander, Tomas

论文摘要

Eilenberger-larkin-ovchinnikov-eliashberg超导性的准经典理论是一种有力的方法,可以研究常规和非常规超导体中广泛的平衡和非平衡现象。我们在这里介绍了一种基于不连续的Galerkin方法的有限元方法,以自愿解决通用设备几何形状的基础传输方程,任意均值自由路径和超导顺序参数的对称性。我们介绍了i)标量杂质散射对$ d $ - 波温度的超导晶粒的影响,以及ii)当前的流量和集中在$ d $ - 波 - 波超导较弱的环节中,建模了最近对Gro oped Gro oped Gro oped高效率的超级传统日报的实验实现。这种有限元元素方法的高适应能力为准经典理论提供了铺平的道路,为未来研究超导设备和非常规超导体中的新物理现象铺平了道路。

The Eilenberger-Larkin-Ovchinnikov-Eliashberg quasiclassical theory of superconductivity is a powerful method enabling studies of a wide range of equilibrium and non-equilibrium phenomena in conventional and unconventional superconductors. We introduce here a finite element method, based on a discontinuous Galerkin approach, to self-consistently solve the underlying transport equations for general device geometries, arbitrary mean free path and symmetry of the superconducting order parameter. We present results on i) the influence of scalar impurity scattering on phase crystals in $d$-wave superconducting grains at low temperatures and ii) the current flow and focusing in $d$-wave superconducting weak links, modeling recent experimental realizations of grooved high-temperature superconducting Dayem bridges. The high adaptability of this finite element method for quasiclassical theory paves the way for future investigations of superconducting devices and new physical phenomena in unconventional superconductors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源