论文标题

请注意无三角形图的最小和最大特征值的总和

Note on the sum of the smallest and largest eigenvalues of a triangle-free graph

论文作者

Csikvári, Péter

论文摘要

令$ g $为$ n $顶点的无三角形图,带有邻接矩阵eigenvalues $μ_1(g)\ geqμ_2(g)\ geq \ dots \ geqμ_n(g)$。在本文中,我们研究数量$$μ_1(g)+μ_n(g)。$$我们证明,对于任何无三角形的图$ g $,我们都有$$μ_1(g)+μ_n(g)\ leq(g)\ leq(3-2 \ sqrt {2}} {2})n。$$对于常规图表,我们的常规图是定期的。我们还证明,在无三角形的强烈规则图中,higman-sims图达到了$$ \ frac {μ_1(g)+μ_n(g)} {n} {$$的最大值。

Let $G$ be a triangle-free graph on $n$ vertices with adjacency matrix eigenvalues $μ_1(G)\geq μ_2(G)\geq \dots \geq μ_n(G)$. In this paper we study the quantity $$μ_1(G)+μ_n(G).$$ We prove that for any triangle-free graph $G$ we have $$μ_1(G)+μ_n(G)\leq (3-2\sqrt{2})n.$$ This was proved for regular graphs by Brandt, we show that the condition on regularity is not necessary. We also prove that among triangle-free strongly regular graphs the Higman-Sims graph achieves the maximum of $$\frac{μ_1(G)+μ_n(G)}{n}.$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源