论文标题

自动化网络机器学习

Automating In-Network Machine Learning

论文作者

Zheng, Changgang, Zang, Mingyuan, Hong, Xinpeng, Bensoussane, Riyad, Vargaftik, Shay, Ben-Itzhak, Yaniv, Zilberman, Noa

论文摘要

使用可编程网络设备来帮助网络内的机器学习一直是重要研究的重点。但是,大多数研究的范围有限,提供了概念证明或描述了封闭源算法。迄今为止,尚无通用解决方案用于将机器学习算法映射到可编程网络设备。在本文中,我们介绍了Planter,这是一个开源的模块化框架,用于将经过训练的机器学习模型映射到可编程设备。种植者支持广泛的机器学习模型,多个目标,并且很容易扩展。播种机的评估比较了不同的映射方法,并证明了应用程序检测,财务交易和经验质量等应用的可行性,性能和资源效率。 结果表明,基于播种机的网络内机器人学习算法可以按线运行,对延迟有忽略不计,与标准切换功能共存,并且没有或较小的准确性权衡。

Using programmable network devices to aid in-network machine learning has been the focus of significant research. However, most of the research was of a limited scope, providing a proof of concept or describing a closed-source algorithm. To date, no general solution has been provided for mapping machine learning algorithms to programmable network devices. In this paper, we present Planter, an open-source, modular framework for mapping trained machine learning models to programmable devices. Planter supports a wide range of machine learning models, multiple targets and can be easily extended. The evaluation of Planter compares different mapping approaches, and demonstrates the feasibility, performance, and resource efficiency for applications such as anomaly detection, financial transactions, and quality of experience. The results show that Planter-based in-network machine learning algorithms can run at line rate, have a negligible effect on latency, coexist with standard switching functionality, and have no or minor accuracy trade-offs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源