论文标题

一种稀疏的回归方法,用于用星系填充暗物质光环和Subhalos

A sparse regression approach for populating dark matter halos and subhalos with galaxies

论文作者

Icaza-Lizaola, M., Bower, Richard G., Norberg, Peder, Cole, Shaun, Schaller, Matthieu

论文摘要

我们使用稀疏回归方法(SRM)来构建准确且可解释的模型,以预测中央和卫星星系的恒星质量,这是其宿主暗物质晕圈的性质的函数。 SRM是机器学习算法,它为从数据中的系统方程建模提供了一个框架。与其他机器学习算法相反,SRM方法的解决方案很简单,并且取决于一组相对较小的可调参数。我们使用$ z = 0 $和$ z = 4 $之间的19个红移切片从Eagle模拟中收集35,459个星系的数据,以参数化主机光环的质量演变。使用适当的输入参数表述,我们的方法可以使用单个预测模型对卫星和中央光晕进行建模,该模型的精度与单独预测时相同。这使我们能够消除这两种星系类型之间的某种任意区别,并仅根据其光环增长历史进行建模。我们的模型可以准确地重现Eagle的恒星质量质量函数和恒星质量依赖的星系相关功能($ξ(r)$)。我们表明,我们的SRM模型预测$ξ(r)$与亚啤酒丰度匹配的SRM模型预测具有竞争力,并且可能与非常随机的树的结果相媲美。我们建议SRM作为一种令人鼓舞的方法,用于仅使用星系模拟暗物质的光晕,并生成可用于探索星系进化或分析即将进行的大规模结构调查的模拟目录。

We use sparse regression methods (SRM) to build accurate and explainable models that predict the stellar mass of central and satellite galaxies as a function of properties of their host dark matter halos. SRM are machine learning algorithms that provide a framework for modelling the governing equations of a system from data. In contrast with other machine learning algorithms, the solutions of SRM methods are simple and depend on a relatively small set of adjustable parameters. We collect data from 35,459 galaxies from the EAGLE simulation using 19 redshift slices between $z=0$ and $z=4$ to parameterize the mass evolution of the host halos. Using an appropriate formulation of input parameters, our methodology can model satellite and central halos using a single predictive model that achieves the same accuracy as when predicted separately. This allows us to remove the somewhat arbitrary distinction between those two galaxy types and model them based only on their halo growth history. Our models can accurately reproduce the total galaxy stellar mass function and the stellar mass-dependent galaxy correlation functions ($ξ(r)$) of EAGLE. We show that our SRM model predictions of $ξ(r)$ is competitive with those from sub-halo abundance matching and might be comparable to results from extremely randomized trees. We suggest SRM as an encouraging approach for populating the halos of dark matter only simulations with galaxies and for generating mock catalogues that can be used to explore galaxy evolution or analyse forthcoming large-scale structure surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源