论文标题
用户社交环境的设备建模以及智能手机包裹的传感器数据的熟悉场所
On-device modeling of user's social context and familiar places from smartphone-embedded sensor data
论文作者
论文摘要
上下文建模和识别代表复杂的任务,允许移动和无处不在的计算应用程序适应用户的情况。当前的解决方案主要集中于通常在集中式体系结构上处理的有限上下文信息,可能将用户的个人数据暴露于隐私泄漏以及缺少个性化功能。出于这些原因,设备上下文的建模和识别代表了该领域的当前研究趋势。在移动环境中用户上下文的不同信息中,社交互动和访问的位置极大地有助于日常生活场景的表征。在本文中,我们提出了一种新颖,无监督和轻巧的方法,以直接在用户移动设备上直接基于自我网络来建模用户的社交环境和她的位置。依靠此模型,该系统能够从智能手机包含的传感器数据中提取高级和语义丰富的上下文功能。具体而言,在社会环境中,它利用了与用户及其设备之间的物理和网络社交互动相关的数据。就位置上下文而言,我们假设与原始位置数据相比,在GPS坐标和接近设备方面,对用户上下文的特定位置的熟悉程度建模更为相关。通过使用5个现实世界数据集,我们评估了社会和位置自我网络的结构,我们将对所提出的模型进行语义评估,并在移动计算性能方面进行复杂性评估。最后,我们通过显示3种机器学习算法的性能来识别日常生活情况,从而提高了3%的AUROC,9%的精度和5%的召回方面,仅使用与物理背景相关的功能。
Context modeling and recognition represent complex tasks that allow mobile and ubiquitous computing applications to adapt to the user's situation. Current solutions mainly focus on limited context information generally processed on centralized architectures, potentially exposing users' personal data to privacy leakage, and missing personalization features. For these reasons on-device context modeling and recognition represent the current research trend in this area. Among the different information characterizing the user's context in mobile environments, social interactions and visited locations remarkably contribute to the characterization of daily life scenarios. In this paper we propose a novel, unsupervised and lightweight approach to model the user's social context and her locations based on ego networks directly on the user mobile device. Relying on this model, the system is able to extract high-level and semantic-rich context features from smartphone-embedded sensors data. Specifically, for the social context it exploits data related to both physical and cyber social interactions among users and their devices. As far as location context is concerned, we assume that it is more relevant to model the familiarity degree of a specific location for the user's context than the raw location data, both in terms of GPS coordinates and proximity devices. By using 5 real-world datasets, we assess the structure of the social and location ego networks, we provide a semantic evaluation of the proposed models and a complexity evaluation in terms of mobile computing performance. Finally, we demonstrate the relevance of the extracted features by showing the performance of 3 machine learning algorithms to recognize daily-life situations, obtaining an improvement of 3% of AUROC, 9% of Precision, and 5% in terms of Recall with respect to use only features related to physical context.