论文标题

包装的多项式回归和神经网络

Bagged Polynomial Regression and Neural Networks

论文作者

Klosin, Sylvia, Vives-i-Bastida, Jaume

论文摘要

串联和多项式回归能够近似于与神经网络相同的功能类别。但是,这些方法在实践中很少使用,尽管它们提供了比神经网络更多的解释性。在本文中,我们表明,其潜在原因是多项式回归估计量的缓慢收敛速率,并提出使用\ textit {bagged}多项式回归(BPR)作为神经网络的有吸引力的替代方案。从理论上讲,我们得出了新的有限样本和渐近$ l^2 $收敛速度的串联估计器。我们表明,通过分开特征空间并为每个分区分别生成多项式特征,可以在平滑设置中提高速率。从经验上讲,我们表明我们提出的估计器BPR可以执行更复杂的模型,具有更多的参数。我们的估计器还在基准MNIST手写数字数据集中靠近最新的预测方法。我们证明了BPR使用卫星数据进行作物分类的神经网络以及预测准确性至关重要的设置,并且通常需要解释性来解决研究问题。

Series and polynomial regression are able to approximate the same function classes as neural networks. However, these methods are rarely used in practice, although they offer more interpretability than neural networks. In this paper, we show that a potential reason for this is the slow convergence rate of polynomial regression estimators and propose the use of \textit{bagged} polynomial regression (BPR) as an attractive alternative to neural networks. Theoretically, we derive new finite sample and asymptotic $L^2$ convergence rates for series estimators. We show that the rates can be improved in smooth settings by splitting the feature space and generating polynomial features separately for each partition. Empirically, we show that our proposed estimator, the BPR, can perform as well as more complex models with more parameters. Our estimator also performs close to state-of-the-art prediction methods in the benchmark MNIST handwritten digit dataset. We demonstrate that BPR performs as well as neural networks in crop classification using satellite data, a setting where prediction accuracy is critical and interpretability is often required for addressing research questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源