论文标题
雅各布人,抗侵犯组和扭转点
Jacobians, Anti-affine groups and torsion points
论文作者
论文摘要
我们给出了奇异曲线$ x $的雅各布式标准,最多是普通的$ n $ point奇异性。特别是,对于具有单个普通双点的曲线,我们与扭转分隔线相关。如果奇异曲线的几何属至少是3,并且归一化是非流传性和非生物性的,那么除了有限的许多情况外,$ x $的雅各比族人是抗假。此外,如果归一化是至少属3的一般曲线,那么$ x $的雅各比式始终是抗恋。
We give criteria for the Jacobian of a singular curve $X$ with at most ordinary $n$-point singularities to be anti-affine. In particular, for the case of curves with single ordinary double point we exhibit a relation with torsion divisors. If the geometric genus of the singular curve is atleast 3 and the normalization is non-hyperelliptic and non-bielliptic, then except for finitely many cases the Jacobian of $X$ is anti-affine. Furthermore, if the normalization is a general curve of genus atleast 3 then the Jacobian of $X$ is always anti-affine.