论文标题
通过有限范围校正,通过弱结合关系的外来哈德子的结构
Structure of exotic hadrons by a weak-binding relation with finite-range correction
论文作者
论文摘要
通过使用弱结合关系来研究浅层结合状态的综合性质,该关系将结合状态的综合性与可观察结果联系起来。我们首先表明,以前的弱结合关系不能以较大的有效范围应用于系统。为了克服这一困难,我们通过重新定义弱结合关系中的典型长度尺度来介绍有限范围的校正。提出了一种估计综合不确定性的方法。从数值上证明,范围校正扩大了弱结合关系的适用区域。最后,我们将改进的弱结合关系应用于实际的Hadron,nuclei和Atomic Systems [Deuteron,$ x(3872)$,$ d^{*} _ {s0}(2317)$,$ d_ {s1}(s1}(2460)$,$nΩ$ dibaryon,$ dibaryon,$ dibary $ dibary $ dibary $ dibary $ dibary, $ {}^{3}_λ{\ rm h} $,$ {}^{4} {\ rm he} $ dimer]从组合中讨论他们的内部结构。我们通过正确考虑不确定性来提出对迪特隆综合的合理估计。 $ x(3872)$和$NΩ$ dibaryon的结果表明,范围校正对于估计物理状态的综合非常重要。
The composite nature of a shallow bound state is studied by using the weak-binding relation, which connects the compositeness of the bound state with observables. We first show that the previous weak-binding relation cannot be applied to the system with a large effective range. To overcome this difficulty, we introduce the finite-range correction by redefining the typical length scale in the weak-binding relation. A method to estimate the uncertainty of the compositeness is proposed. It is numerically demonstrated that the range correction enlarges the applicable region of the weak-binding relation. Finally, we apply the improved weak-binding relation to the actual hadrons, nuclei, and atomic systems [deuteron, $X(3872)$, $D^{*}_{s0}(2317)$, $D_{s1}(2460)$, $NΩ$ dibaryon, $ΩΩ$ dibaryon, ${}^{3}_Λ{\rm H}$, and ${}^{4}{\rm He}$ dimer] to discuss their internal structure from the compositeness. We present a reasonable estimation of the compositeness of the deuteron by properly taking into account the uncertainty. The results of $X(3872)$ and the $NΩ$ dibaryon show that the range correction is important to estimate the compositeness of physical states.