论文标题

在标量回归推断上使用快速功能在睡眠过程中对葡萄糖水平的案例研究

A case study of glucose levels during sleep using fast function on scalar regression inference

论文作者

Sergazinov, Renat, Leroux, Andrew, Cui, Erjia, Crainiceanu, Ciprian, Aurora, R. Nisha, Punjabi, Naresh M., Gaynanova, Irina

论文摘要

连续葡萄糖监测器(CGM)越来越多地用于测量血糖水平并提供有关糖尿病治疗和治疗的信息。我们激励的研究在睡眠期间包含CGM数据,可为174名研究参与者,患有5分钟频率测量的II型糖尿病,平均为10晚。我们旨在量化糖尿病药物和睡眠呼吸暂停严重程度对葡萄糖水平的影响。从统计上讲,这是关于标量协变量与功能响应之间关联的推论问题。但是,数据的许多特征使分析变得困难,包括(1)在日期内的非平稳性; (2)大量的日间异质性,非高斯和异常值; 3)由于研究参与者的数量,睡眠期和时间点的数量,较大的维度。我们评估和比较两种方法:快速单变量推理(FUI)和功能添加混合模型(FAMM)。我们介绍了一种计算P值的新方法,用于使用FUI测试协变量的全局空作用,并提供实用的指南来加速FAMM计算,使其对我们的数据可行。尽管FUI和FAMM在哲学上是不同的,但它们在我们的研究中导致了相似的观点估计量。与FAMM相反,FUI是快速的,是在日期之内的相关性,并可以构建联合置信区间。我们的分析表明:(1)Biguanide药物和睡眠呼吸暂停严重程度显着影响睡眠期间的葡萄糖轨迹,并且(2)估计的效应是时间不变的。

Continuous glucose monitors (CGMs) are increasingly used to measure blood glucose levels and provide information about the treatment and management of diabetes. Our motivating study contains CGM data during sleep for 174 study participants with type II diabetes mellitus measured at a 5-minute frequency for an average of 10 nights. We aim to quantify the effects of diabetes medications and sleep apnea severity on glucose levels. Statistically, this is an inference question about the association between scalar covariates and functional responses. However, many characteristics of the data make analyses difficult, including (1) non-stationary within-day patterns; (2) substantial between-day heterogeneity, non-Gaussianity, and outliers; 3) large dimensionality due to the number of study participants, sleep periods, and time points. We evaluate and compare two methods: fast univariate inference (FUI) and functional additive mixed models (FAMM). We introduce a new approach for calculating p-values for testing a global null effect of covariates using FUI, and provide practical guidelines for speeding up FAMM computations, making it feasible for our data. While FUI and FAMM are philosophically different, they lead to similar point estimators in our study. In contrast to FAMM, FUI is fast, accounts for within-day correlations, and enables the construction of joint confidence intervals. Our analyses reveal that: (1) biguanide medication and sleep apnea severity significantly affect glucose trajectories during sleep, and (2) the estimated effects are time-invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源