论文标题
可变长度遗传算法,具有连续参数优化质子治疗中光束布局的参数
Variable length genetic algorithm with continuous parameters optimization of beam layout in proton therapy
论文作者
论文摘要
质子疗法是快速发展的一种方式。质子束在质子轨迹末端的最大剂量沉积之后,其特征是最大的剂量沉积,质子束可以向肿瘤提供高度的保形剂量,同时保留风险和周围健康组织的器官。基于点扫描技术的新治疗计划系统现在可以提出多场优化。但是,在大多数情况下,这种优化仅处理田间的流动,而弹道术(现场几何形状)的选择留给了肿瘤学家和医学物理学家。 在这项工作中,我们研究了基于遗传方法的新优化框架。该工具旨在探索新的辐照方案并评估实际或将来的辐射系统的潜力。我们建议以连续的方式和横梁数量的方式同时优化目标点和光束入射角。没有考虑到\ textit {先验{先验}的技术约束,\ textit {i.e.}〜梁的能量值,入射力方向和目标点是自由参数。 所提出的算法基于经典遗传运营商的修改版本:突变,交叉和选择。我们使用与参数随机扰动相关的实际编码来获得潜在解决方案的连续变化。我们还在交叉的交换点引入了扰动,以允许梁数的变化。这些变化是通过引入梁的下限来控制的。 在本文中,我们在基本测试案例中介绍了该算法及其行为的完整描述。最终在临床现实的测试案例中评估了所提出的方法。
Proton therapy is a modality in fast development. Characterized by a maximum dose deposition at the end of the proton trajectory followed by a sharp fall-off, proton beams can deliver a highly conformal dose to the tumor while sparing organs at risk and surrounding healthy tissues. New treatment planning systems based on spot scanning techniques can now propose multi-field optimization. However, in most cases, this optimization only processes the field fluences whereas the choice of ballistics (field geometry) is left to the oncologist and medical physicist. In this work, we investigate a new optimization framework based on a genetic approach. This tool is intended to explore new irradiation schemes and to evaluate the potential of actual or future irradiation systems. We propose to optimize simultaneously the target points and beam incidence angles in a continuous manner and with a variable number of beams. No \textit{a priori} technological constraints are taken into account, \textit{i.e.}~the beam energy values, incidence directions and target points are free parameters. The proposed algorithm is based on a modified version of classical genetic operators: mutation, crossover and selection. We use the real coding associated with random perturbations of the parameters to obtain a continuous variation of the potential solutions. We also introduce a perturbation in the exchange points of the crossover to allow variations of the number of beams. These variations are controlled by introducing a beam fluence lower limit. In this paper, we present a complete description of the algorithm and of its behaviour in an elementary test case. The proposed method is finally assessed in a clinically-realistic test case.