论文标题
内部质量在调节质量金属关系散射中的作用
The Role of Inner HI Mass in Regulating the Scatter of the Mass-Metallicity Relation
论文作者
论文摘要
我们从HI随访观测值中使用789个类似磁盘的星系(有596个HI检测),用于研究内部HI气体在质量 - 同相金属性关系中的次要依赖中的可能作用。我们使用在星系的有效半径上得出的气相金属性。我们在光半径内得出内部HI质量,但也使用总HI质量和恒星形成率(SFR)进行比较。我们确认在固定恒星质量处的总HI质量和气相金属性之间的反相关性,但是当总HI质量被内部HI质量取代时,反相关显着增强。与与SFR的可忽略的效果相反,与内部质量相关的次级关系引入了与内部HI质量的次级关系可以在质量播音金属关系的散布中产生较小但明显的下降(16%)。当使用不同的金属诊断时,与内部HI质量的相关性是鲁棒的,但与SFR的相关性不存在。当气相金属性得出在中央区域而不是在有效半径上时,与内部HI质量的相关性变得较弱。这些结果支持这样的想法,即质量金属关系中的散射受气体积聚,而不是直接由SFR调节,并且强调了从大致相同区域中得出气体质量和金属性的重要性。内部HI质量和气相金属性之间的新关系将为化学和星系演化模型提供新的限制。
We use 789 disk-like, star-forming galaxies (with 596 HI detections) from HI follow-up observations for the SDSS-IV MaNGA survey to study the possible role of inner HI gas in causing secondary dependences in the mass-gas-phase metallicity relation. We use the gas-phase metallicity derived at the effective radii of the galaxies. We derive the inner HI mass witHIn the optical radius, but also use the total HI mass and star formation rate (SFR) for a comparison. We confirm the anticorrelation between the total HI mass and gas-phase metallicity at fixed stellar mass, but the anticorrelation is significantly strengthened when the total HI mass is replaced by the inner HI mass. Introducing a secondary relation with the inner HI mass can produce a small but noticeable decrease (16%) in the scatter of the mass-gas-phase metallicity relation, in contrast to the negligible effect with the SFR. The correlation with the inner HI mass is robust when using different diagnostics of metallicity, but the correlation with SFR is not. The correlation with the inner HI mass becomes much weaker when the gas-phase metallicity is derived in the central region instead of at the effective radius. These results support the idea that the scatter in the mass-metallicity relation is regulated by gas accretion, and not directly by the SFR, and stress the importance of deriving the gas mass and the metallicity from roughly the same region. The new relation between inner HI mass and gas-phase metallicity will provide new constraints for chemical and galaxy evolution models.