论文标题

检测蒙版可改善OCR的嘈杂文档

Detection Masking for Improved OCR on Noisy Documents

论文作者

Rotman, Daniel, Azulai, Ophir, Shapira, Inbar, Burshtein, Yevgeny, Barzelay, Udi

论文摘要

光学特征识别(OCR),从扫描文档中提取文本信息的任务是一项重要且广泛使用的技术,用于数字化和索引物理文档。现有技术在干净的文档中表现良好,但是当文档在视觉上降低或存在非文本元素时,可能会严重影响OCR质量,特别是由于检测错误。在本文中,我们提出了一个改进的检测网络,该检测网络具有掩盖系统,以提高在文档上执行的OCR质量。通过从图像过滤非文本元素,我们可以利用文档级OCR来合并上下文信息以改善OCR结果。我们对公开可用的数据集执行统一的评估,以证明我们方法的有用性和广泛的适用性。此外,我们通过专门调整以改善检测结果的独特硬性组件,介绍并公开我们的合成数据集,并评估从其使用情况下获得的好处

Optical Character Recognition (OCR), the task of extracting textual information from scanned documents is a vital and broadly used technology for digitizing and indexing physical documents. Existing technologies perform well for clean documents, but when the document is visually degraded, or when there are non-textual elements, OCR quality can be greatly impacted, specifically due to erroneous detections. In this paper we present an improved detection network with a masking system to improve the quality of OCR performed on documents. By filtering non-textual elements from the image we can utilize document-level OCR to incorporate contextual information to improve OCR results. We perform a unified evaluation on a publicly available dataset demonstrating the usefulness and broad applicability of our method. Additionally, we present and make publicly available our synthetic dataset with a unique hard-negative component specifically tuned to improve detection results, and evaluate the benefits that can be gained from its usage

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源