论文标题
IISY:实用的网络内分类
IIsy: Practical In-Network Classification
论文作者
论文摘要
目前,数据赢得了用户生成的数据和数据处理系统之间的大鼠竞赛。机器学习的使用增加导致处理需求的进一步增加,而数据量量不断增长。为了赢得比赛,需要将机器学习应用于通过网络的数据。数据的网络分类可以减少服务器上的负载,减少响应时间并提高可扩展性。在本文中,我们使用现成的网络设备以混合方式介绍了IISY,以混合方式实施机器学习分类模型。 IISY针对网络内分类的三个主要挑战:(i)将分类模型映射到网络设备(ii)提取所需的功能以及(iii)解决资源和功能约束。 IISY支持一系列传统和集合机器学习模型,独立于开关管道中的阶段数量。此外,我们演示了IISY用于混合分类的使用,其中在一个开关上实现了一个小模型,在后端的大型模型上实现了一个小模型,从而实现了接近最佳的分类结果,同时大大降低了服务器上的延迟和负载。
The rat race between user-generated data and data-processing systems is currently won by data. The increased use of machine learning leads to further increase in processing requirements, while data volume keeps growing. To win the race, machine learning needs to be applied to the data as it goes through the network. In-network classification of data can reduce the load on servers, reduce response time and increase scalability. In this paper, we introduce IIsy, implementing machine learning classification models in a hybrid fashion using off-the-shelf network devices. IIsy targets three main challenges of in-network classification: (i) mapping classification models to network devices (ii) extracting the required features and (iii) addressing resource and functionality constraints. IIsy supports a range of traditional and ensemble machine learning models, scaling independently of the number of stages in a switch pipeline. Moreover, we demonstrate the use of IIsy for hybrid classification, where a small model is implemented on a switch and a large model at the backend, achieving near optimal classification results, while significantly reducing latency and load on the servers.