论文标题

有限歧义的概率自动机

Probabilistic Automata of Bounded Ambiguity

论文作者

Fijalkow, Nathanaël, Riveros, Cristian, Worrell, James

论文摘要

概率自动机是非确定有限自动机的扩展,其中概率注释过渡。尽管它很简单,但该模型表现得很高,许多相关的算法问题是不可确定的。在这项工作中,我们关注空虚问题(及其变体的价值问题),该问题询问给定的概率自动机是否接受一些概率大于给定阈值的单词。我们认为对自动机的自然结构限制,即模棱两可的程度,该程度定义为所有单词上最大的接受运行数量。已知的不确定性证明利用了无限的歧义,因此我们专注于有限歧义的概率自动机。我们的主要贡献是构建有效的算法,用于通过还原为称为随机路径问题的多目标优化问题来分析有限歧义的概率自动机。我们获得了一种多项式时间算法,用于近似于固定歧义的概率自动机的值以及对于2次磁性概率自动机的空置问题的准多项式时间算法。我们通过不合适的结果来补充这些积极的结果,表明除非ptime = np,否则无法近似有限歧义的概率自动机的值。

Probabilistic automata are an extension of nondeterministic finite automata in which transitions are annotated with probabilities. Despite its simplicity, this model is very expressive and many of the associated algorithmic questions are undecidable. In this work we focus on the emptiness problem (and its variant the value problem), which asks whether a given probabilistic automaton accepts some word with probability greater than a given threshold. We consider a natural and well-studied structural restriction on automata, namely the degree of ambiguity, which is defined as the maximum number of accepting runs over all words. The known undecidability proofs exploits infinite ambiguity and so we focus on the case of finitely ambiguous probabilistic automata. Our main contributions are to construct efficient algorithms for analysing finitely ambiguous probabilistic automata through a reduction to a multi-objective optimisation problem called the stochastic path problem. We obtain a polynomial time algorithm for approximating the value of probabilistic automata of fixed ambiguity and a quasi-polynomial time algorithm for the emptiness problem for 2-ambiguous probabilistic automata. We complement these positive results by an inapproximability result stating that the value of finitely ambiguous probabilistic automata cannot be approximated unless PTIME = NP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源