论文标题
通过重新加权的重新归一化组转换来降低有限尺寸的效果
Reducing finite-size effects with reweighted renormalization group transformations
论文作者
论文摘要
我们将直方图重新加权技术与匹配的蒙特卡洛重新归一化组方法相结合,以对具有适度小晶格尺寸的系统的关键指数进行计算有效计算。该方法依赖于两个相同晶格大小的系统之间的重新归一化组映射以部分消除有限尺寸的效果,以及在参数空间的扩展区域中使用直方图重新加权以获得计算有效的结果,用于明确确定重新量化的构造coppling参数,以提取$ sceply $ n $ $^^4指数。我们通过量化方法的计算益处,并讨论重新加权如何打开将蒙特卡洛重新归一化组方法扩展到具有复杂值为动作的系统的机会。
We combine histogram reweighting techniques with the two-lattice matching Monte Carlo renormalization group method to conduct computationally efficient calculations of critical exponents on systems with moderately small lattice sizes. The approach, which relies on the construction of renormalization group mappings between two systems of identical lattice size to partially eliminate finite-size effects, and the use of histogram reweighting to obtain computationally efficient results in extended regions of parameter space, is utilized to explicitly determine the renormalized coupling parameters of the two-dimensional $ϕ^{4}$ scalar field theory and to extract multiple critical exponents. We conclude by quantifying the computational benefits of the approach and discuss how reweighting opens up the opportunity to extend Monte Carlo renormalization group methods to systems with complex-valued actions.