论文标题

缩小本地$ \ unicode {x2013} $稀疏网络中的交货差距,通过扩张器分解

Narrowing the LOCAL$\unicode{x2013}$CONGEST Gaps in Sparse Networks via Expander Decompositions

论文作者

Chang, Yi-Jun, Su, Hsin-Hao

论文摘要

许多组合优化问题可以在$(1 \ pmε)$因子中近似于$ \ text {poly}(\ log n,1/ε)$ roughs在本地模型中通过网络分解[Ghaffari,Kuhn,Kuhn和Maus,Stoc 2018]。这些方法需要发送无限尺寸的消息,因此它们不会扩展到交货模型,这将消息大小限制为$ o(\ log n)$位。 在本文中,我们开发了一个通用框架,用于获取$ \ text {poly}(\ log n,1/ε)$ - 圆$(1 \ pmε)$ - 用于许多组合优化问题的近似算法,包括最大加权匹配,最大匹配,最大独立集和相关集合,以及图表中的图表,包括固定的MINDER MINDER MINDER MINDER MINDER MINDER MINDER MINDER MINDER MINDER MINDER模型。这类图涵盖了文献中已经研究的许多稀疏网络类,包括平面图,有界形式图和有界树的图。 此外,我们表明我们的框架可以应用于有效的分布式属性测试算法,该算法的次要图形属性是在不相交联合下关闭的任意次要闭合属性,并显着概括了先前的分布式属性测试算法,用于[Levi,Medina和Ron,PODC 2018&RON,PODC 2018&Ristitated&分布计算2021]中的平面性。 我们的框架使用分布式扩展器分解算法[Chang and Saranurak,focs 2020]将图分解为高电导率的簇。我们表明,任何不包括固定小型的图形都可以接收小边缘分离器。使用此结果,我们显示了扩展器分解中每个群集中一个高度顶点的存在,这使得群集的整个图形拓扑都可以路由到顶点。与本地模型中网络分解的使用类似,顶点将能够在集群引起的子图上执行任何局部计算,并在群集上广播结果。

Many combinatorial optimization problems can be approximated within $(1 \pm ε)$ factors in $\text{poly}(\log n, 1/ε)$ rounds in the LOCAL model via network decompositions [Ghaffari, Kuhn, and Maus, STOC 2018]. These approaches require sending messages of unlimited size, so they do not extend to the CONGEST model, which restricts the message size to be $O(\log n)$ bits. In this paper, we develop a generic framework for obtaining $\text{poly}(\log n, 1/ε)$-round $(1\pm ε)$-approximation algorithms for many combinatorial optimization problems, including maximum weighted matching, maximum independent set, and correlation clustering, in graphs excluding a fixed minor in the CONGEST model. This class of graphs covers many sparse network classes that have been studied in the literature, including planar graphs, bounded-genus graphs, and bounded-treewidth graphs. Furthermore, we show that our framework can be applied to give an efficient distributed property testing algorithm for an arbitrary minor-closed graph property that is closed under taking disjoint union, significantly generalizing the previous distributed property testing algorithm for planarity in [Levi, Medina, and Ron, PODC 2018 & Distributed Computing 2021]. Our framework uses distributed expander decomposition algorithms [Chang and Saranurak, FOCS 2020] to decompose the graph into clusters of high conductance. We show that any graph excluding a fixed minor admits small edge separators. Using this result, we show the existence of a high-degree vertex in each cluster in an expander decomposition, which allows the entire graph topology of the cluster to be routed to a vertex. Similar to the use of network decompositions in the LOCAL model, the vertex will be able to perform any local computation on the subgraph induced by the cluster and broadcast the result over the cluster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源