论文标题
部分可观测时空混沌系统的无模型预测
M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Industrial recommender systems have been growing increasingly complex, may involve \emph{diverse domains} such as e-commerce products and user-generated contents, and can comprise \emph{a myriad of tasks} such as retrieval, ranking, explanation generation, and even AI-assisted content production. The mainstream approach so far is to develop individual algorithms for each domain and each task. In this paper, we explore the possibility of developing a unified foundation model to support \emph{open-ended domains and tasks} in an industrial recommender system, which may reduce the demand on downstream settings' data and can minimize the carbon footprint by avoiding training a separate model from scratch for every task. Deriving a unified foundation is challenging due to (i) the potentially unlimited set of downstream domains and tasks, and (ii) the real-world systems' emphasis on computational efficiency. We thus build our foundation upon M6, an existing large-scale industrial pretrained language model similar to GPT-3 and T5, and leverage M6's pretrained ability for sample-efficient downstream adaptation, by representing user behavior data as plain texts and converting the tasks to either language understanding or generation. To deal with a tight hardware budget, we propose an improved version of prompt tuning that outperforms fine-tuning with negligible 1\% task-specific parameters, and employ techniques such as late interaction, early exiting, parameter sharing, and pruning to further reduce the inference time and the model size. We demonstrate the foundation model's versatility on a wide range of tasks such as retrieval, ranking, zero-shot recommendation, explanation generation, personalized content creation, and conversational recommendation, and manage to deploy it on both cloud servers and mobile devices.