论文标题
陀螺动力学:相对论稀疏的流体强度强
Gyrohydrodynamics: Relativistic spinful fluid with strong vorticity
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We develop a relativistic (quasi-)hydrodynamic framework, dubbed the gyrohydrodynamics, to describe fluid dynamics of many-body systems with spin under strong vorticity based on entropy-current analysis. This framework generalizes the recently-developed spin hydrodynamics to the regime where the spin density is at the leading order in derivatives but suppressed by another small parameter, the Planck constant $\hbar$, due to its quantum nature. Our analysis shows that the complete first-order constitutive relations of gyrohydrodynamics involve seventeen transport coefficients and are highly anisotropic.