论文标题

基于最小部分的整数分区的比较

A Comparison of Integer Partitions Based on Smallest Part

论文作者

Binner, Damanvir Singh, Rattan, Amarpreet

论文摘要

对于正整数$ n,l $和$ s $,请考虑以下两套包含$ n $的分区,其最大和最小零件之间的差异为$ l $:第一组包含最小零件$ s $的分区,而第二组包含至少$ s+1+1 $的分区。令$ g_ {l,s}(q)$为生成系列,其系数为$ q^n $是上述两组分区的大小之间的差异。该生成系列是由Berkovich和UNCU在2019年推出的。先前的结果集中在$ g_ {l,s}(q)$的非负性上,$ s = 1 $和$ s = 2 $。在本文中,我们显示了一般S的$ g_ {l,s}(q)$的最终阳性,并且还为情况找到了确切的非阴性结果$ s = 3 $。

For positive integers $n, L$ and $s$, consider the following two sets that both contain partitions of $n$ with the difference between the largest and smallest parts bounded by $L$: the first set contains partitions with smallest part $s$, while the second set contains partitions with smallest part at least $s+1$. Let $G_{L,s}(q)$ be the generating series whose coefficient of $q^n$ is difference between the sizes of the above two sets of partitions. This generating series was introduced by Berkovich and Uncu in 2019. Previous results concentrated on the nonnegativity of $G_{L,s}(q)$ in the cases $s=1$ and $s=2$. In the present paper, we show the eventual positivity of $G_{L,s}(q)$ for general s and also find a precise nonnegativity result for the case $s=3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源