论文标题
昂贵的可能性推断参数推断的模拟退火方法
A simulated annealing approach to parameter inference with expensive likelihoods
论文作者
论文摘要
我们提出了一种针对通用情况下的参数推理方法的新方法,其中评估可能性$ \ MATHCAL {L} $(即,观察给定的固定模型配置的数据的概率在数值上很昂贵。受模拟退火基础的想法的启发,该方法首先评估$χ^2 = -2 \ ln \ Mathcal {l} $在稀疏的拉丁高管参数(EIGEN)空间中的密度增加的拉丁高管上。采样点的半模块选择是各向异性梯度为$χ^2 $的梯度,并迅速放大至少$χ^2 $。然后,使用采样的$χ^2 $值用于训练插装器,该插装器进一步用于标准的马尔可夫链蒙特卡洛(MCMC)算法中,以廉价地探索具有高密度的参数空间,类似于基于仿真器的方法,现在在宇宙学研究中流行。与标准的MCMC算法相比,与示例线性和非线性问题的比较表明了10至100或更多因素的可能性评估数量的收益。作为特定的实现,我们将使用Cobaya与各向异性模拟退火公开发布Code Picasa:参数推断,该退火结合了最小化器(用户定义的$χ^2 $)与高斯过程回归,用于培训interpolator和随后的MCMC实施,并使用Cobaya Framework进行了训练。对于可观察到的数据和理论模型的性质不可知,我们的实施对于宇宙学,天体物理学及其他许多新兴问题可能有用。
We present a new approach to parameter inference targeted on generic situations where the evaluation of the likelihood $\mathcal{L}$ (i.e., the probability to observe the data given a fixed model configuration) is numerically expensive. Inspired by ideas underlying simulated annealing, the method first evaluates $χ^2=-2\ln\mathcal{L}$ on a sparse sequence of Latin hypercubes of increasing density in parameter (eigen)space. The semi-stochastic choice of sampling points accounts for anisotropic gradients of $χ^2$ and rapidly zooms in on the minimum of $χ^2$. The sampled $χ^2$ values are then used to train an interpolator which is further used in a standard Markov Chain Monte Carlo (MCMC) algorithm to inexpensively explore the parameter space with high density, similarly to emulator-based approaches now popular in cosmological studies. Comparisons with example linear and non-linear problems show gains in the number of likelihood evaluations of factors of 10 to 100 or more, as compared to standard MCMC algorithms. As a specific implementation, we publicly release the code PICASA: Parameter Inference using Cobaya with Anisotropic Simulated Annealing, which combines the minimizer (of a user-defined $χ^2$) with Gaussian Process Regression for training the interpolator and a subsequent MCMC implementation using the COBAYA framework. Being agnostic to the nature of the observable data and the theoretical model, our implementation is potentially useful for a number of emerging problems in cosmology, astrophysics and beyond.