论文标题

来自机器学习调节的随机场仿真的快速而现实的大规模结构

Fast and realistic large-scale structure from machine-learning-augmented random field simulations

论文作者

Piras, Davide, Joachimi, Benjamin, Villaescusa-Navarro, Francisco

论文摘要

以越来越精确的精确度来对宇宙中的暗物质分布产生数千个模拟是一项具有挑战性但至关重要的任务,可以促进对当前和即将进行的宇宙学调查的开发。已经提出了许多廉价的替代$ n $ body模拟的替代品,即使它们通常未能重现较小的非线性尺度的统计数据。在这些替代方案中,一个共同的近似值由对数正态分布表示,该分布也具有自身的局限性,同时甚至对于高分辨率密度字段也非常快地计算。在这项工作中,我们培训了一个主要由卷积层制成的生成深度学习模型,以将投影的对数正态暗物质密度字段转换为更真实的暗物质图,如从完整的$ n $ body模拟中获得的。我们详细介绍了我们遵循的过程,以生成高度相关的对数正态和模拟地图,我们将其用作训练数据,从而利用傅立叶阶段的信息。我们证明了模型的性能,将各种统计测试与不同的现场分辨率,红移和宇宙学参数进行了比较,证明了其稳健性并解释了其当前局限性。当在100个测试图上评估时,增强的对数正态随机场将功率谱重现至$ 1 \ H \ \ \ rm {MPC}^{ - 1} $的波数,并在10%以内的Bispectrum,并且始终在误差栏内,信托目标模拟。最后,我们描述了如何计划将我们提出的模型与现有工具集成在一起,以产生更准确的球形随机字段,以进行弱透镜分析。

Producing thousands of simulations of the dark matter distribution in the Universe with increasing precision is a challenging but critical task to facilitate the exploitation of current and forthcoming cosmological surveys. Many inexpensive substitutes to full $N$-body simulations have been proposed, even though they often fail to reproduce the statistics of the smaller, non-linear scales. Among these alternatives, a common approximation is represented by the lognormal distribution, which comes with its own limitations as well, while being extremely fast to compute even for high-resolution density fields. In this work, we train a generative deep learning model, mainly made of convolutional layers, to transform projected lognormal dark matter density fields to more realistic dark matter maps, as obtained from full $N$-body simulations. We detail the procedure that we follow to generate highly correlated pairs of lognormal and simulated maps, which we use as our training data, exploiting the information of the Fourier phases. We demonstrate the performance of our model comparing various statistical tests with different field resolutions, redshifts and cosmological parameters, proving its robustness and explaining its current limitations. When evaluated on 100 test maps, the augmented lognormal random fields reproduce the power spectrum up to wavenumbers of $1 \ h \ \rm{Mpc}^{-1}$, and the bispectrum within 10%, and always within the error bars, of the fiducial target simulations. Finally, we describe how we plan to integrate our proposed model with existing tools to yield more accurate spherical random fields for weak lensing analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源