论文标题
ICN超新星类型的各种特性指向多个祖先通道
The Diverse Properties of Type Icn Supernovae Point to Multiple Progenitor Channels
论文作者
论文摘要
我们提出了ICN型超新星(SNE ICN)的样本,这是一种新发现的瞬态类别,其特征在于它们与H-和He-poor poor偶发物质(CSM)的相互作用。该样本是迄今为止最大的SNE ICN集合,包括对两个已发表对象(SN 2019HGP和SN 2021CSP)的观察以及两个尚未在文献中发表的对象(SN 2019JC和SN 2021CKJ)。 SNE ICN显示了一系列峰值亮度,上升时间和下降速率以及各种较晚的光谱特征。为了研究它们的爆炸和祖细胞的特性,我们将其骨化光曲线拟合到半分析模型,该模型由$^{56} $ ni的散发性相互作用和放射性衰减组成。我们从光曲线中推断出低弹射量($ \ lyssim $ 2 m $ _ \ odot $)和$^{56} $ ni masses($ \ simsim $ 0.04 m $ _ \ odot $),这表明正常剥离的envelope supernova(sessn)爆炸中的爆炸率无法在下面的cootern cootern cootern cootern cooterions iCSM中。此外,我们发现SN 2019JC位置的恒星形成速率密度的上限位于Sesne分布的下端,与该物体的巨大恒星祖细胞冲突。基于估计的弹出质量,$^{56} $ ni群众和爆炸场地属性,我们赞成一个低质量的超脱落星星作为某些SNE ICN的祖细胞。对于其他人,我们建议狼射线星祖细胞可以更好地解释其观察到的特性。这项研究表明,多个祖细胞通道可能会产生SNE ICN和其他相互作用供电的瞬变。
We present a sample of Type Icn supernovae (SNe Icn), a newly-discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) as well as two objects (SN 2019jc and SN 2021ckj) not yet published in the literature. The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties we fit their bolometric light curves to a semi-analytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of $^{56}$Ni. We infer low ejecta masses ($\lesssim$ 2 M$_\odot$) and $^{56}$Ni masses ($\lesssim$ 0.04 M$_\odot$) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an upper limit on the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on the estimated ejecta masses, $^{56}$Ni masses, and explosion site properties, we favor a low-mass, ultra-stripped star as the progenitor of some SNe Icn. For others, we suggest that a Wolf-Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.