论文标题
对模仿的表示学习的实证研究
An Empirical Investigation of Representation Learning for Imitation
论文作者
论文摘要
模仿学习通常需要大型演示设置,以便处理代理商在部署期间可能会发现自己的各种情况。但是,收集专家演示可能很昂贵。视力,强化学习和NLP的最新工作表明,辅助表示目标可以减少对大量昂贵的,特定于任务的数据的需求。我们对模仿的表示学习(EIRLI)的实证研究调查了类似的好处是否适用于模仿学习。我们提出了一个模块化框架,用于构建表示算法,然后使用我们的框架来评估代表性学习的实用性,以模仿几个环境套件。在我们评估的设置中,我们发现基于图像的表示学习的现有算法提供了有限的价值,相对于良好的基线,图像增强了。为了解释这一结果,我们调查了模仿学习与代表学习提供了巨大好处的其他环境之间的差异,例如图像分类。最后,我们发布了有据可查的代码库,该代码库都复制了我们的发现,并提供了一个模块化框架,用于从可重复使用的组件中创建新的表示算法。
Imitation learning often needs a large demonstration set in order to handle the full range of situations that an agent might find itself in during deployment. However, collecting expert demonstrations can be expensive. Recent work in vision, reinforcement learning, and NLP has shown that auxiliary representation learning objectives can reduce the need for large amounts of expensive, task-specific data. Our Empirical Investigation of Representation Learning for Imitation (EIRLI) investigates whether similar benefits apply to imitation learning. We propose a modular framework for constructing representation learning algorithms, then use our framework to evaluate the utility of representation learning for imitation across several environment suites. In the settings we evaluate, we find that existing algorithms for image-based representation learning provide limited value relative to a well-tuned baseline with image augmentations. To explain this result, we investigate differences between imitation learning and other settings where representation learning has provided significant benefit, such as image classification. Finally, we release a well-documented codebase which both replicates our findings and provides a modular framework for creating new representation learning algorithms out of reusable components.