论文标题

使用Dirichlet先验,高斯工艺先验和分层建模来改善废桶的贝叶斯放射学分析

Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling

论文作者

Laloy, Eric, Rogiers, Bart, Bielen, An, Borella, Alessandro, Boden, Sven

论文摘要

我们提出了从放射学测量中推断放射性废物鼓中放射性核素库存的贝叶斯推断的“ SCK CEN方法”的三种方法论改进。首先,我们求助于同位素矢量的先前分布的Dirichlet分布。 Dirichlet分布具有其矢量样品元素总和至1的吸引力。我们使用的贝叶斯分层建模框架利用了此可用信息,但也通过在受控范围内允许间接测量数据的信息内容(即伽玛和中子计数)来确认其不确定性,以塑造同位素向量的实际先验分布。第三,我们建议在推断1D空间分布的数量时使用高斯工艺(GP)进行正规化贝叶斯倒置。根据效率的不确定性,我们不断使用与以前工作相同的风格鼓建模方法来说明滚筒垂直方向上的源分布不确定性。一系列合成测试,然后应用于真实的废桶中,表明将先前的同位素组合物不确定性的层次建模与GP先验建模横跨鼓的垂直PU的先验建模效果很好。我们还发现,我们的GP先验可以处理有和无空间相关的情况。我们提出的方法所涉及的计算时间是几个小时的顺序,例如大约2,以提供对考虑逆问题中所有感兴趣的变量的不确定性估计。这需要进一步调查以加快推论。

We present three methodological improvements of the "SCK CEN approach" for Bayesian inference of the radionuclide inventory in radioactive waste drums, from radiological measurements. First we resort to the Dirichlet distribution for the prior distribution of the isotopic vector. The Dirichlet distribution possesses the attractive property that the elements of its vector samples sum up to 1. Second, we demonstrate that such Dirichlet priors can be incorporated within an hierarchical modeling of the prior uncertainty in the isotopic vector, when prior information about isotopic composition is available. Our used Bayesian hierarchical modeling framework makes use of this available information but also acknowledges its uncertainty by letting to a controlled extent the information content of the indirect measurement data (i.e., gamma and neutron counts) shape the actual prior distribution of the isotopic vector. Third, we propose to regularize the Bayesian inversion by using Gaussian process (GP) prior modeling when inferring 1D spatially-distributed quantities. As of uncertainty in the efficiencies, we keep using the same stylized drum modeling approach as proposed in our previous work to account for the source distribution uncertainty across the vertical direction of the drum. A series of synthetic tests followed by application to a real waste drum show that combining hierarchical modeling of the prior isotopic composition uncertainty together with GP prior modeling of the vertical Pu profile across the drum works well. We also find that our GP prior can handles both cases with and without spatial correlation. The computational times involved by our proposed approach are on the order of a few hours, say about 2, to provide uncertainty estimates for all variables of interest in the considered inverse problem. This warrants further investigations to speed up the inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源