论文标题

基于转移学习的物理信息神经网络,用于在不同的负载方案下解决工程结构中的反问题

Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios

论文作者

Xu, Chen, Cao, Ba Trung, Yuan, Yong, Meschke, Günther

论文摘要

最近,已经提出了一类称为物理信息神经网络(PINN)的机器学习方法,并在解决各种科学计算问题方面均有流行。这种方法通过将物理定律嵌入损失函数来实现偏微分方程(PDE)的解决方案。可以通过简单地将现实生活中的数据与现有PINN算法结合在一起来解决许多反问题。在本文中,我们提出了一种使用不确定性加权的多任务学习方法,以提高PINN的训练效率和准确性,以实现线性弹性和超弹性中的反问题。此外,我们在结构分析中证明了PINN在实际反问题上的应用:基于有限的位移监视点的不同工程结构的外部负载的预测。为此,我们首先在离线阶段确定简化的加载方案。通过将未知的边界条件设置为可学习的参数,Pinn可以在测量数据的支持下预测外部负载。在实际工程项目的在线阶段时,采用转移学习来从离线阶段微调预训练的模型。我们的结果表明,即使有了嘈杂的Gappy数据,由于物理法律和先验知识的双重正则化,与传统分析方法相比,它表现出更好的鲁棒性,因此仍然可以从Pinn模型中获得令人满意的结果。我们的方法能够通过几何缩放和不同的负载方案弥合各种结构之间的差距,并且训练的收敛性也不仅通过层冻结,而且还通过预训练的模型继承了多任务重量,从而使其在实际工程项目中被应用于实际工程项目中。

Recently, a class of machine learning methods called physics-informed neural networks (PINNs) has been proposed and gained prevalence in solving various scientific computing problems. This approach enables the solution of partial differential equations (PDEs) via embedding physical laws into the loss function. Many inverse problems can be tackled by simply combining the data from real life scenarios with existing PINN algorithms. In this paper, we present a multi-task learning method using uncertainty weighting to improve the training efficiency and accuracy of PINNs for inverse problems in linear elasticity and hyperelasticity. Furthermore, we demonstrate an application of PINNs to a practical inverse problem in structural analysis: prediction of external loads of diverse engineering structures based on limited displacement monitoring points. To this end, we first determine a simplified loading scenario at the offline stage. By setting unknown boundary conditions as learnable parameters, PINNs can predict the external loads with the support of measured data. When it comes to the online stage in real engineering projects, transfer learning is employed to fine-tune the pre-trained model from offline stage. Our results show that, even with noisy gappy data, satisfactory results can still be obtained from the PINN model due to the dual regularization of physics laws and prior knowledge, which exhibits better robustness compared to traditional analysis methods. Our approach is capable of bridging the gap between various structures with geometric scaling and under different loading scenarios, and the convergence of training is also greatly accelerated through not only the layer freezing but also the multi-task weight inheritance from pre-trained models, thus making it possible to be applied as surrogate models in actual engineering projects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源