论文标题
n外观类别的本地化
Localization of n-exangulated categories
论文作者
论文摘要
Nakaoka-Ogawa-sakai考虑了外侧类别的本地化。该构造统一了阿贝尔类别的塞雷商和三角形类别的verdier商。最近,Herschend-Liu-Nakaoka将$ N $的类别定义为外侧类别的更高维度类似物。令$ \ Mathcal C $为$ n $ exangulated类别,$ \ Mathcal {f} $为满足温和假设的乘法系统。在本文中,我们为$ \ Mathcal c $的本地化提供了必要和充分的条件,为$ n $ escanged类别。这种方式给出了新的$ n $外观类别的新类别,这些类别既不是$ n $ excACT,也不是$(n+2)$ - 一般而言。此外,我们的结果还推广了Nakaoka-Ogawa-Sakai的工作。
Nakaoka-Ogawa-Sakai considered the localization of an extriangulated category. This construction unified the Serre quotient of abelian categories and the Verdier quotient of triangulated categories. Recently, Herschend-Liu-Nakaoka defined $n$-exangulated categories as a higher dimensional analogue of extriangulated categories. Let $\mathcal C$ be an $n$-exangulated category and $\mathcal{F}$ be a multiplicative system satisfying mild assumption. In this article, we give a necessary and sufficient condition for the localization of $\mathcal C$ be an $n$-exangulated category. This way gives a new class of $n$-exangulated categories which are neither $n$-exact nor $(n+2)$-angulated in general. Moreover, our result also generalizes work by Nakaoka-Ogawa-Sakai.