论文标题

概率时间序列预测的多尺度注意力流

Multi-scale Attention Flow for Probabilistic Time Series Forecasting

论文作者

Feng, Shibo, Miao, Chunyan, Xu, Ke, Wu, Jiaxiang, Wu, Pengcheng, Zhang, Yang, Zhao, Peilin

论文摘要

多元时间序列的概率预测是众所周知的挑战但实际任务。一方面,挑战是如何有效地捕获相互作用时间序列之间的跨系列相关性,以实现准确的分布建模。另一方面,我们应该考虑如何更准确地捕获时间序列中的上下文信息,以建模时间序列的多元时间动力学。在这项工作中,我们提出了一种新型的非自动入学深度学习模型,称为多尺度关注归一流(MANF),在该模型中,我们整合了多尺度的注意力和相对位置信息,并且多元数据分布由条件正常化的流动表示。此外,与自回旋建模方法相比,我们的模型避免了累积误差的影响,并且不会增加时间复杂性。广泛的实验表明,我们的模型在许多流行的多元数据集上实现了最先进的性能。

The probability prediction of multivariate time series is a notoriously challenging but practical task. On the one hand, the challenge is how to effectively capture the cross-series correlations between interacting time series, to achieve accurate distribution modeling. On the other hand, we should consider how to capture the contextual information within time series more accurately to model multivariate temporal dynamics of time series. In this work, we proposed a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF), where we integrate multi-scale attention and relative position information and the multivariate data distribution is represented by the conditioned normalizing flow. Additionally, compared with autoregressive modeling methods, our model avoids the influence of cumulative error and does not increase the time complexity. Extensive experiments demonstrate that our model achieves state-of-the-art performance on many popular multivariate datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源