论文标题

seqzero:带有顺序提示和零射模型的几乎没有弹奏的构图语义解析

SeqZero: Few-shot Compositional Semantic Parsing with Sequential Prompts and Zero-shot Models

论文作者

Yang, Jingfeng, Jiang, Haoming, Yin, Qingyu, Zhang, Danqing, Yin, Bing, Yang, Diyi

论文摘要

最近的研究表明,将预审计的语言模型(LMS)与规范性语言结合起来,以进行几次射击语义解析方面有希望的结果。由于形式语言的组成结构,规范的话语通常是冗长而复杂的。学习产生这种规范的话语需要大量数据才能达到高性能。 LMS仅用几个样本进行微调,很容易忘记鉴定的知识,过度伪装的偏见,并且遭受了分布外的概括错误。为了解决这些问题,我们提出了一种新颖的几声语义解析方法-Seqzero。 Seqzero将问题分解为一系列子问题,这些序列与正式语言的子序列相对应。基于分解,LMS只需要使用预测子序列的提示来生成简短的答案。因此,seqzero避免一次产生长长的规范话语。此外,Seqzero不仅采用了几个射击模型,而且还采用了零拍的模型来减轻过度拟合。特别是,Seqzero通过配备了我们建议的约束重新制定的合奏来阐明两种模型的优点。 Seqzero在Geoquery和Ecommercequery上实现了基于Bart的模型的SOTA性能,它们是两个少量数据集,具有组成数据分配。

Recent research showed promising results on combining pretrained language models (LMs) with canonical utterance for few-shot semantic parsing. The canonical utterance is often lengthy and complex due to the compositional structure of formal languages. Learning to generate such canonical utterance requires significant amount of data to reach high performance. Fine-tuning with only few-shot samples, the LMs can easily forget pretrained knowledge, overfit spurious biases, and suffer from compositionally out-of-distribution generalization errors. To tackle these issues, we propose a novel few-shot semantic parsing method -- SeqZero. SeqZero decomposes the problem into a sequence of sub-problems, which correspond to the sub-clauses of the formal language. Based on the decomposition, the LMs only need to generate short answers using prompts for predicting sub-clauses. Thus, SeqZero avoids generating a long canonical utterance at once. Moreover, SeqZero employs not only a few-shot model but also a zero-shot model to alleviate the overfitting. In particular, SeqZero brings out the merits from both models via ensemble equipped with our proposed constrained rescaling. SeqZero achieves SOTA performance of BART-based models on GeoQuery and EcommerceQuery, which are two few-shot datasets with compositional data split.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源