论文标题

PINN方法在公制图上的漂移扩散方程的比较

A comparison of PINN approaches for drift-diffusion equations on metric graphs

论文作者

Blechschmidt, Jan, Pietschman, Jan-Frederik, Riemer, Tom-Christian, Stoll, Martin, Winkler, Max

论文摘要

在本文中,我们着重于比较量子图的机器学习方法,即公制图,即具有专用边缘长度的图形和相关的差分运算符。在我们的情况下,微分方程是一个漂移扩散模型。量子图的计算方法需要对差分运算符进行仔细的离散化,该差分运算符也包含节点条件,在我们的情况下,Kirchhoff-Neumann条件。传统的数值方案相当成熟,但是当微分方程成为优化问题的约束时,必须手动量身定制。最近,物理知情的神经网络(PINN)已成为一种用途工具,用于从一系列应用中解决部分微分方程。它们提供了灵活性来解决参数识别或优化问题,仅通过稍微更改用于正向模拟的问题公式。我们比较了几种求解公制图上漂移扩散的方法。

In this paper we focus on comparing machine learning approaches for quantum graphs, which are metric graphs, i.e., graphs with dedicated edge lengths, and an associated differential operator. In our case the differential equation is a drift-diffusion model. Computational methods for quantum graphs require a careful discretization of the differential operator that also incorporates the node conditions, in our case Kirchhoff-Neumann conditions. Traditional numerical schemes are rather mature but have to be tailored manually when the differential equation becomes the constraint in an optimization problem. Recently, physics informed neural networks (PINNs) have emerged as a versatile tool for the solution of partial differential equations from a range of applications. They offer flexibility to solve parameter identification or optimization problems by only slightly changing the problem formulation used for the forward simulation. We compare several PINN approaches for solving the drift-diffusion on the metric graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源