论文标题

关于某些延迟差异多项式的价值分布

On value distribution of certain delay-differential polynomials

论文作者

Li, Nan, Yang, Lianzhong

论文摘要

给定一个有限订单$ρ$的整个功能$ f $,让$ l(z,f)= \ sum_ {j = 0}^{m} b_ {j}(j}(z)f^{(k_ {j {j})}(z+c_ {j})$是线性延迟 - 延迟 - 延迟delay-dymectienta $ o(r^{λ+\ varepsilon})+s(r,f)$,$λ<ρ$。提供$α$,$β$是相似的小功能,我们认为$ l(z,f)-αf^{n}-β$的零分布分别为$ n \ geq 3 $和$ n = 2 $。我们的结果是Chen的改进和补充(摘要Appl。Anal。,2011,2011:ID239853,1--9)和Laine(J. Math。Anal。Appl。2019,469,2):808---826。),等等。

Given an entire function $f$ of finite order $ρ$, let $L(z,f)=\sum_{j=0}^{m}b_{j}(z)f^{(k_{j})}(z+c_{j})$ be a linear delay-differential polynomial of $f$ with small coefficients in the sense of $O(r^{λ+\varepsilon})+S(r,f)$, $λ<ρ$. Provided $α$, $β$ be similar small functions, we consider the zero distribution of $L(z,f)-αf^{n}-β$ for $n\geq 3$ and $n=2$, respectively. Our results are improvements and complements of Chen(Abstract Appl. Anal., 2011, 2011: ID239853, 1--9), and Laine (J. Math. Anal. Appl. 2019, 469(2): 808--826.), etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源